WEKO3
アイテム
代数的微分,積分と差分方程式
https://ous.repo.nii.ac.jp/records/650
https://ous.repo.nii.ac.jp/records/6501291281e-0a25-4383-8a32-e1e2d1cb7133
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文(ELS) / Departmental Bulletin Paper(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 1983-03-05 | |||||||||||
タイトル | ||||||||||||
タイトル | 代数的微分,積分と差分方程式 | |||||||||||
言語 | ja | |||||||||||
タイトル | ||||||||||||
タイトル | Algebraic Derivative, Integral and Difference Equations | |||||||||||
言語 | en | |||||||||||
タイトル | ||||||||||||
タイトル | ダイスウテキ ビブン セキブン ト サブン ホウテイシキ | |||||||||||
言語 | ja-Kana | |||||||||||
言語 | ||||||||||||
言語 | jpn | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | departmental bulletin paper | |||||||||||
ページ属性 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | P(論文) | |||||||||||
著者名 |
早原, 四郎
× 早原, 四郎
|
|||||||||||
著者所属(日) | ||||||||||||
ja | ||||||||||||
岡山理科大学理学部機械理学科 | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Department of Mechanical Science, Faculty of Science, Okayama University of Science | ||||||||||||
抄録(英) | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | S. Hayabara and S. Haruki published a book [4] "The new operator methods and the theory of discrete analytic functions (in Japanese)". Concerning to the solution of linear sequence equations or difference equations with constant coefficients, the new operator methods are explained in this book. However for sequence equations or difference equations with variable coefficients, it is necessary to express these equations in the opertional space. T. Fenyes and P. Kosik [1] introduced an "Algebraic derivative" such as D{X_n}={-nx_n} and transformed equations of sequences in E-space into algebraic differential equations in Q-space by using operation D. The solutions of algebraic differential equations of the first order was shown in [1] and [4]. In this note we will introduce a new algebraic logarithmic function and obtain several formulae of algebraic integrals. And we will express solutions for ordinary algebraic dfferential equations of the second order and for algebraic partial differential equations. | |||||||||||
言語 | en | |||||||||||
雑誌書誌ID | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AN00033244 | |||||||||||
書誌情報 |
ja : 岡山理科大学紀要. A, 自然科学 en : The Bulletin of the Okayama University of Science, A, Natural Science 巻 18, p. 17-29, 発行日 1983-03-05 |