WEKO3
アイテム
On Pseudo-Affine Domains
https://ous.repo.nii.ac.jp/records/1089
https://ous.repo.nii.ac.jp/records/10896e64b88e-4882-4ff9-a371-7f33688024af
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文(ELS) / Departmental Bulletin Paper(1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 1995-03-31 | |||||||||||||||||
タイトル | ||||||||||||||||||
タイトル | On Pseudo-Affine Domains | |||||||||||||||||
言語 | ja | |||||||||||||||||
タイトル | ||||||||||||||||||
タイトル | On Pseudo-Affine Domains | |||||||||||||||||
言語 | en | |||||||||||||||||
言語 | ||||||||||||||||||
言語 | eng | |||||||||||||||||
資源タイプ | ||||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||||
資源タイプ | departmental bulletin paper | |||||||||||||||||
ページ属性 | ||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||
内容記述 | P(論文) | |||||||||||||||||
著者名 |
吉田, 憲一
× 吉田, 憲一
× 織田, 進
|
|||||||||||||||||
著者所属(日) | ||||||||||||||||||
ja | ||||||||||||||||||
岡山理科大学応用数学科 | ||||||||||||||||||
著者所属(日) | ||||||||||||||||||
ja | ||||||||||||||||||
宇治山田高校 | ||||||||||||||||||
著者所属(英) | ||||||||||||||||||
en | ||||||||||||||||||
Department of Applied Mathematics, Okayama University of Science | ||||||||||||||||||
著者所属(英) | ||||||||||||||||||
en | ||||||||||||||||||
Uji-Yamada High School | ||||||||||||||||||
抄録(英) | ||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||
内容記述 | In what follows, all rings considered are commutative with identity. We say that a ring A is a Hilbert ring if each prime ideal of A is an intersection of maximal ideals of R. It is known that a k-affine domain over a field k is a Hilbert ring ([G, (31.11)]). We say that a ring A is a catenary ring if the following condition is satisfied : for any prime ideals p and q of A with p⊆q, then exists a saturated chain of prime ideals starting from p and ending at q, and all such chains have the same (finite) length. We say that a ring A is a universally catenary ring if A is Noetherian and every finitely generated A-algebra is catenary. Let k be a field and R a K-affine domain. Then R is Noetherian, Hilbert and catenary. Moreover dim R_m=Tr.deg_kR<+∞ for each maximal ideal m of R. Our objective in this paper is to investigate integral domains having these properties. Throughout this paper, k denotes a field and R an integral domain containing k and K(R) denotes the quotient field of R unless otherwise specified. Any unexplained terminology is standard, as in [M], [N]. | |||||||||||||||||
言語 | en | |||||||||||||||||
雑誌書誌ID | ||||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||||
収録物識別子 | AN00033244 | |||||||||||||||||
書誌情報 |
ja : 岡山理科大学紀要. A, 自然科学 en : Bulletin of Okayama University of Science. A, Natural Sciences 巻 30, p. 1-5, 発行日 1995-03-31 |