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In what follows, all rings considered are commutative with identity.

We say that a ring A is a Hilbert ring if each prime ideal of A is an intersection of
maximal ideals of R. It is known that a k-affine domain over a field £ is a Hilbert ring
([G, 31.1D)]).

We say that a ring A is a catenary ring if the following condition is satisfied: for any
prime ideals p and ¢ of A with p € ¢, then exists a saturated chain of prime ideals
starting from p and ending at g, and all such chains have the same (finite) length. We
say that a ring A is a universally catenary ring if A is Noetherian and every finitely
generated A-algebra is catenary.

Let £ be a field and R a K-affine domain. Then R is Noetherian, Hilbert and
catenary. Moreover dim Rn, = T7.deg.R < + oo for each maximal ideal m of R.

Our objective in this paper is to investigate integral domains having these properties.

Throughout this paper, £ denotes a field and R an integral domain containing 4 and
K(R) denotes the quotient field of R unless otherwise specified. Any unexplained
terminology is standard, as in [M], [N].

Definition 1. An integral domain R is called a preudo-affine domain over k (PAD(k)
for short) if the following conditions are satisfied:

(i) R 1s Noetherian,

(i1) R is Hilbert and catenary;

(ii1) dim Rn= Tr.deg.R < +co for each maximal ideal m of R.

Remark 2. It is known that a k-affine domain is a PAD(%£) ([M, (5.6)]). A field K
containing 4 is a PAD(k) if and only if K is algebraic over 4.

The following Lemma 3 is shown in [O].
Lemma 3. Let R be an integral domain containing a field k. Let
0)=RcCcPC--CPFr

be a strict ascending chain of prime ideals of R and let a;. <€ P\Pi-, (1 <i<r). Then
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a, ..., ar ave algebraically independent over k.

Proof. Suppose that there exists a non-trivial polynomial F(Xj, ... ,X) in a polynomial
ring [ X, ... ,X;] such that F(ay, ... ,ar) =0. We can assume that deg F(Xj, ... ,X)
is minimal among such polynomials. Write:

0=F(a, ... ,ar) = Foaz, ... ,ar)ai+ *++ +Fula., ... ,ar)al.

Let a3, ... ,ar denote the images in R/P.. By induction on », we may assume that az, ..

a'» are algebraically independent over k. Thus since F(ai, ... ,a’r) = Fo(as, ... ,a?) =0,
we have Fo(Xo, ... ,X;) =0 in k[ X, ... ,X,]. We have:

F(a, ... ,ar») = a(Faz, ... ,ar)+ -+ +Fulaz, ... ,ar)al™) =0,
and hence
Fias, ... ,ar)+ -+ +Fuas, ... ,ar)al™' =0.
By the minimality of deg F(X, ... ,X7), we conclude that:
Fi(Xe, ... . Xr)+ o +Fa(X, ...  X)X'=0
in (X ..., X-]1=0in £[ X1, ... ,X,], a contradiction. ]
Proposition 4. dim R < Tr.deg:R.
Proof. This follows Lemma 3 immediately. U

Corollary 4.1. Let R be a PAD(k) and let p< HH(R). Then
() dim R/p=dim R—1;
(¢1) Tr.degeR[p = Tr.degeR—1.

Proof. Since R is catenary, dim R—1=dim R/p. By definithon, T7.degwR/p < Tr.deg
«R/p by Proposition 4. Thus T7.degvR/p = Tr.degsR—1=dim R—1=dim R/p. ]

Proposition 5. Let R be a PAD(k) and let p is a prime ideal of R. Then Rfp is also
a PAD(k).

Proof. Since R is Hilbert (resp. Noetherian), so is R/p. Corollary 4.1 repeatedly,
dim R/p=dim R— ht(p) = Tr.degeR/p. ]

Corollary 5.1. An integral domain which is a homomorphic image of a PAD(k) is also
a PAD(E).

Proof. Let p be a prime ideal of 4t(p) = 1. Then it is clear that R/p is a Hilbert ring.
Hence R/p is a PAD(%) by Corollary 4.1. So we get our conclusion by induction on
dim R. Ll

Proposition 6. Assume that R is a PAD(k). Then ht(p) =dim R—dim R/p= Tr.deg:
R — Tr.degwR/p for each p< Spec(R).
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Proof. This follows from the proof of Corollary 4.1 and dim R = T7.deg.R and
dim R/p= Tr.deg«R/p by definition. O

Lemma 7 ([G, (31.18)]). The following condictions are equivalent:

(1) R is a Hilbert ring;

(2) For each maximal ideal M of a polynomial ving R[Xi, ... . Xxl, MNR is a
maximal ideal of R;

(3) A polynomial ring R[X,, ... ,Xn] ts a Hilbert ving;

(4) R/l is a Hilbert ving for each proper ideal I of R.

Example. Let % be a field and %[¢] a polynomial ring. Put R = k[ ¢]). Then R[ X]/(tX
—1) = k(¢) and (£X —1) is a maximal ideal of R[X] with R N (tX—1) =(0). So R[X]
is a Hilbert ring but is not a PAD(%).

Lemma 8 ([G, (31.9)]). If R is a Hilbert ving and if M is a maximal ideal of a
polynomial ring R[X,, ... , Xnl, then R[X,, ... ,.Xx]/M is algebraic over RIM N R.

L. J. Ratliff shows the following result:

Lemma 9 (cf. [M, p. 31]) Let (A, m) be a Noetherian local domain. Then A is catenary
if and only if ht(p)+dim A/p=dim A for each p < Spec(A).

Lemma 10. Let R be a PAD(k), let R[X] be a polynomial ving and let P be a prime
ideal of R[X] such that (PN R)R[X]= P. Then dim R[X]/P = Tr.deg.R[ X]/P.

Proof. Since R is a PAD(k), we have dim R/P N R = Tr.degxR/P N R by Proposition
5. Since (P N R)R[X] =+ P, it follows that dim R/P N P =dim R[X]/P. By the same
reason, R[X]/P is algebraic over R/P N R. Thus we have T7. degvR/P N R = Tr.deg:
R[X]/P. Hence dim R[X]/P=dim R/P N R = Tr.degeR/P N R = Tr.deg:R[ X]/P.

[J

Proposition 11. A PAD(k) is universally catenary.

Proof. We have only to prove a polynomial ring R[X] is catenary. Take P& Spec
(R[X]). First assume that P = pR[X] for some p& Spec(R) ie., (PN R)[X]=P.
Then ht(P) = ht(p] = (dim R+1)—(dim R/p+1)=dim R[X]—dim R[X]/pR[X] by
Lemma 9. Second, assume that (P N R) = P. Then &t(p)—ht(P N R)=1. Hence ht(p)
=m(PNR)+1=dim R—dim R/PNR+1=dim R[X]— Tr.degR/P N R =dim R
[X]—Tr.deg vR/IPN R =dim R[X]—Tr.deg :R/P N R >dim R[X]|— Tr.deg «R[X]/P
=dim R[X]—dim R[X]/P, where the last equality follows from Lemma 10. But we
know that 4t(P) < dim R[X]—dim R[X]/P. Thus we get #t(P) =dim R[X]—dim R
[X]/P. Therefore by Lemma 9, we conclude that R[X] is catenary.

Let A be a Noetherian domain and B a finitely generated extension domain. We say
that the dimension formala holds between A and B if

htP = hip+ Tr.degsB— Tr.degep)k(P)
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for every P& Spec(R), where p= P N A.

Corollary 11.1. Assume that R is a PAD(k). Then dimension formula holds between
R/p and B for every prime ideal p of R and every finitely generated domain B of R/p.

Proof. Since R is universally catenary by Proposition 11, the conclusion follows from
(M, (15.6)]. O]

Theorem 12. The following conditions are equivalent:

(/) R is a PAD(k);

(#1) A polynomial ving R[X,, ... ,Xx] is a PAD(k);

(iii) Every integral domain containing R which is finitely generated over R is a
PAD(k).

Proof. (i) = (i) follows from Lemmas 7 and 8 because dim R[Xj, ... ,X»] =dim R+
= Tr.degiR+ n = Tr.deguR[ X, ..., Xa). By Proposition 11, R[ X, ... ,Xx] is catenary.
(#7) = (#77) and (777) = (¢) are immediately verified by Proposition 5. O

Proposition 13. Let R be a normal PAD(k) and A a Noethevian domain which is
integral over R. Then A is a PAD(k).

Proof. Let p be a prime ideal of A with dim A/p=1. Since A is integral and since B
is a Hilbert ring, p is contained in infinitely many maximal ideals by Lying-Over
Theorom. So by [G, (31, Ex. 22)], A is a Hilbert ring. Let M be a maximal ideal of A
and put m N R. Then m is a maximal ideal of R. Note that A/M is algebraic over R/m.
Moreover dim Ay = dim R» by Going-Down Theorom. Since T7.degeA = Tr.degxR and
dim Rn.= Tr.degvR, we have dim Au = Tr.deg:A. It is easy to see that A is catenary.
Thus A is PAD(%). ]

Proposition 14. Let A be a Noetherian domain containing R with K(A) algebraic over
K(R). If A is faithfully flat over R and R is a PAD(k), then A is a PAD(k).

Proof. Since a canonical morphism Spec(A) — Spec(R) is surjective. Let M be a
maximal ideal of A and put m =M N R. Then Tr.degiA = Tr.degxR =dim R, and
dim Rn»=dim Ax by Going-Down Theorem. By the same way as the proof of Proposi-
tion 13, we can show that A is Hilbert. Since A is faithfully flat over the catenary ring
R, A is lso catenary. Thus A is a PAD(k). O

Proposition 15. Assume that R be a PAD(k) and let m be a maximal ideal of R. Then
R/m is algebraic over k.

Proof. The field R/m is a PAD(%) by Proposition 5. So by the fact stated in Remark
2, R/m is algebraic over k.

Proposition 16. Assume that R is a normal PAD(k). Let L be a finite separable field
extension of the quotient field K(R) of R. Let B be intermediate ring between R and
L which is integral over R. Then B is a PAD(k).
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Proof. By [N, (10.16)], the integral closure R, of R in L is a finite R-module. Hence
B is a finite R-module. So B is PAD(%) by Theorom 12. ]

Corollary 16.1. Assume that R is a PAD(k) whose derived normal rving R is
Noetherian. Let L be finite separable extension field of the quotient field K(R). Then
the integral closure Ry of R in L is a PAD(k).

Proof. By Proposition 13, R is a PAD(k). Note that R, is integral closure of R in L.
Since is Noetherian, R, is a PAD(k) by Proposition 16. O

Proposition 17. Let R denote the derived normal domain of a Noetherian domain R.
If R is a PAD(k), then so is R.

Proof. The domain R is Hilbert by Lying-Over Theorem, which is seen in the same
maners of the proof of Proposition 13 because R is Hilbert and catenary (Proposition
11). Moreover T¥.degiRn= Tr.degeRy =dim Ry <dim R. < T7.deg.Rn, Where M is
maximal ideal of R lying over a maximal ideal m of R. Hence R is a PAD(k). [

Let A be a ring and I an ideal of A. We recall that J is called a reduction of I if
J <1 and JI" = I"*! for at least one positive integer » ([L], [O]). It is easy to see that
VI = VI and ht(J) = ht(I).

Proposition 18. Assume that a Noetherian domain R satisfies the condition : dim R =
Tr.degeR:=n and let I be an ideal of R. Then I has a reduction gemerated by (n
+1)-elements.

Proof. This follows from [L] or [O, (3.4)]. U]

Corollary 18.1. Assume that R is a PAD(k) with dim R = n. Then each ideal I of R
has a reduction ]| generated by (n+1)-elements.
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