Semi Anti-Integral Elements and Integral Extensions

Junro Sato and Ken-ichi Yoshida

Okayama University of Science, Department of Applied Mathematics, Ridai-cho 1-1, Okayama 700, Japan (Received September 30, 1992)

Let R be a Noetherian domain with quotient field K. Let L be an extension of a field K and let α be an element of L which is algebraic over K. Put $d = [K[\alpha] : K]$. We consider the canonical exact sequence

$$0 \longrightarrow I \longrightarrow R[X] \longrightarrow R[\alpha] \longrightarrow 0.$$

If I is generated by polynomials of degree d, then α is said to be the anti-integral element over R. Our unexplained technical terms are standard and are seen in [1] and [2]. Let $A = R[\alpha]$. It is well known that if α is integral and anti-integral over R, then A is a free R-module of rank d([3].)

Note that α has an unique monic relation of degree d over K. Let $\phi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$, $\eta_i \in K$, be a monic relation of α over K and let $I_{\eta_i} = R : {}_R \eta_i = \{a \in R | a\eta_i \in R\}$ and $I_{\alpha} = \bigcap_i I_{\eta_i}$. Then we have :

PROPOSITION 1. The following statements are equivalent to each other;

- (1) α is anti-integral over R,
- $(2) \quad R[X] :_{K[X]} \phi_{\alpha}(X) \subseteq I_{\alpha}R[X].$

PROOF. (1) \Rightarrow (2): For any element g(X) of R(X): $\kappa_{[X]} \phi_{\alpha}(X)$, we have $g(X)\phi_{\alpha}(X) = f(X)$ for some $f(X) \in R[X]$. Let $\rho : R[X] \longrightarrow R[\alpha]$ be a natural ring homomorphism. Then $f(x) \in Ker \rho$. We consider the natural exact sequence

$$0 \longrightarrow \operatorname{Ker} \rho \longrightarrow R[X] \stackrel{\rho}{\longrightarrow} R[\alpha] \longrightarrow 0.$$

Since α is anti-integral over R, Ker $\rho = I_{\alpha}\phi_{\alpha}(X)R[X]$, (see[3]) and hence we have $f(X) = \sum_i (h_i\phi_{\alpha}(X))t_i(X)$ for some $h_i \in I_{\alpha}$, $t_i(X) \in R[X]$. Cancelling $\phi_{\alpha}(X)$, we see that $g(X) = \sum_i h_i t_i(X) \in I_{\alpha}R[X]$.

(2) \Rightarrow (1): For any element $f(X) \in \text{Ker } \rho$, we have $f(X) = g(X)\phi_{\alpha}(X)$ for some $g(X) \in K[X]$. Thus $g(X) \in R[X]$: $\kappa_{[X]} \phi_{\alpha}(X) \subseteq I_{\alpha}R[X]$ by assumption. Hence we can write $g(X) = \sum_i h_i t_i(X)$, $h_i \in I_{\alpha}$, $t_i(X) \in R[X]$. Therefore we obtain $f(X) = \sum_i (h_i \phi_{\alpha}(X)) t_i(X) \in I_{\alpha} \phi_{\alpha}(X) R[X]$. Thus α is anti-integral R.

This observation leads to the following definition.

DEFINITION 2. If $R[X] :_{K[X]} \phi_{\alpha}(X) \subseteq R[X]$, α is said to be a semi anti-integral element over R.

If α is anti-integral element over R, it is semi-anti-integral element over R by Proposition 1.

REMARK 3. Let \bar{R} be the integral closure of R in K. By Gauss's lemma, we have easily seen $\eta_1 \subseteq \bar{R}$ for all i, if α is integral over R.

Next we shall show that if α is an integral and semi anti-integral element over R, then α is an anti-integral element over R. For the purpose of this proof, we need the following Proposition. If α is an anti-integral element over R, we put $\mathbf{H}_{\alpha} = R[X] :_{K[X]} \phi_{\alpha}(X)$.

PROPOSITION 4. The following statements are equivalent to each other;

- (1) α is anti-integral over R,
- (2) $\mathbf{H}_{\alpha} = \mathbf{I}_{\alpha} \mathbf{R}[\mathbf{X}].$

PROOF. (1) \Rightarrow (2): Let g(X) be an arbitrary element of \mathbf{H}_{α} . Then, from the proof (1) \Rightarrow (2) of Proposition 1, we can write $g(X) = \sum_i h_i t_i(X)$, $h_i \in I_{\alpha}$, $t_i(X) \in R[X]$. Hence we see that $g(X) \in I_{\alpha}R[X]$. Since one inclusion is obvious, we have desired result. (2) \Rightarrow (1): Assume that $f(\alpha) = 0$ for some $f(X) \in R[X]$. Then we have $f(X) = g(X)\phi_{\alpha}(X)$ for some $g(X) \in K[X]$. Thus $g(X) \in R[X]$:_{K[X]} $\phi_{\alpha}(X) = \mathbf{H}_{\alpha}$. Hence we have $g(X) = \sum_i g_i X^i$, $g_i \in I_{\alpha}$. Note that $g_i \phi_{\alpha}(X) \in R[X]$ and $deg(g_i \phi_{\alpha}(X)) = d$ for all i. Therefore f(X) is generated by $I_{\alpha}\phi_{\alpha}(X)$. Thus α is anti-integral over R.

Q.E.D.

As a consequence, we have:

THEOREM 5. If α is an integral and semi anti-integral element over R, then α is an anti-integral element over R, and hence $A = R[\alpha]$ is a free R-module of rank d.

PROOF. Since α is integral over R, there exsists a monic polynomial $f(X) \in R[X]$ such that $f(\alpha) = 0$. First, we consider the case of deg f(X) = d. In this case, α is anti-integral over R, and hence it is nothing to prove. Next we assume that $n = \deg f(X) > d$. Let

$$\begin{split} f(X) &= (X^{n-d} + \zeta_1 X^{n-d-1} + \dots + \zeta_{n-d}) \phi_{\alpha}(X) \\ &= (X^{n-d} + \zeta_1 X^{n-d-1} + \dots + \zeta_{n-d}) (X^d + \eta_1 X^{d-1} + \dots + \eta_d), \end{split}$$

 ζ_1 , $\eta_1 \in K$. Since α is semi anti-integral over R, we see ζ_1 , ζ_2 , ..., $\zeta_{n-d} \in R$ by the definition. If we equate coefficients of X^{n-1} , we see $\eta_1 + \zeta_1 \in R$, and hence $\eta_1 \in R$.

Proceeding in this way, we get $\eta_i \in R$ for all i. Thus $\phi_a(X) \in R[X]$, so that α is anti-integral over R.

Q.E.D.

REMARK 6. Let R be a Noetherian domain with quotient field K. Let L be an extension a field K and Let α be an element of L which is algebraic over K. Put $d = [K[\alpha]:K]$. Assume that α is integral over R. Then there exsists a monic polynomial $f(X) \in R[X]$ such that $f(\alpha) = 0$. Then we have ;

deg
$$f(X) = d \Leftrightarrow A$$
 is a free R-module of rank $d \Leftrightarrow \phi_a(X) \in R[X] \Leftrightarrow f(X) = \phi_a(X)$

Thus we obtain the following Proposition. we omit the proof.

PROPOSITION 7. $\{p \in \operatorname{Spec}(R) | A_p \text{ is not flat over } R_p\} = \{p \in \operatorname{Spec}(R) | p \supseteq I_\alpha\}.$ We assume that there exsists a monic polynomial $f(X) \in R[X]$ of degree d+1 such that $f(\alpha) = 0$. Then we have $f(X) = (X + \zeta)\phi_{\alpha}(X)$, $\zeta \in K$. It follows that $\zeta \in \overline{R}$. Thus,

PROPOSITION 8. The following statements are equivalent to each other.

- (1) $\zeta \in R$
- (2) $\phi_{\alpha}(X) \in R[X]$.

Therefore we have $\{p \in \operatorname{Spec}(R) | A_p \text{ is not flat over } R_p\} = \{p \in \operatorname{Spec}(R) | p \supseteq I_g\}.$

PROOF. Let $f(X) = X^{d+1} + a_1 X^d + \cdots + a_d$ and $\phi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$. Since $f(X) = (X + \zeta)\phi_{\alpha}(X)$, we deduce that $a_1 = \zeta + \eta_1$, $a_i = \zeta \eta_{i-1} + \eta_i (2 \le i \le d)$ and $a_{d+1} = \zeta \eta_d$. Note that $a_i \in R(1 \le i \le d)$. Thus we see that $\zeta \in R$ is equivalent to $\eta_1 \in R$. The second half is easily seen the fact that A_p is flat over R_p if and only if $\phi_{\alpha}(X) \in R_p[X]$. This complete the proof.

Q.E.D.

REMARK 9. Consider the canonical exact sequence

$$0 \longrightarrow P \longrightarrow R[X] \longrightarrow R[\alpha] \longrightarrow 0.$$

Under the above condition, we have $P = I_{\alpha}\phi_{\alpha}(X)R[X] + f(X)R[X]$.

Finally, we have the following:

THEOREM 10. Let R be a Noetherial domain with quotient field K. Let L be an extension of a field K and let α be an element of L which is algebraic over K. Let $d = [K[\alpha]:K]$ and $\phi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$, $\eta_i \in K$ be a monic relation of α over K. Assume that α is integral over R. Let B be a intermediate ring between R and \overline{R} . Then the following statements are equivalent to each other;

- (1) $R[X] :_{K[X]} \phi_{\alpha}(X) \subseteq B[X],$
- (2) $B[\alpha]$ is flat over B and α is anti-integral over B.

REFERENCES

- 1) H. Matsumura, Commutative Algebra (2nd ed.), Benjamin, New York (1980).
- 2) M. Nagata, Local Rings, Interscience (1961).
- 3) S. Oda, J. Sato and K. Yoshida, High degree anti-integral extenions of Noetherian domains, to appear in Osaka Journal of Mathematics.