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Let R be a Noetherian domain with quotient field K. Let L be an extension of a field
K and let @ be an element of L which is algebraic over K. Put d = [K[«a] : K]. We
consider the canonical exact sequence

0— I— R[X]— Rla]— 0.

If I is generated by polynomials of degree d, then « is said to be the anti-integral
element over R. Our unexplained technical terms are standard and are seen in [1] and
[2]. Let A = R[«]. It is well known that if « is integral and anti-integral over R, then
A is a free R-module of rank d([3].)

Note that ¢ has an unique monic relation of degree d over K. Let ¢.(X) = X¢
+ X4+ 74, m € K, be a monic relation of @ over K and let I,, =R : rpp =
{a € Rlam € R} and I, = Mil,. Then we have :

PROPOSITION 1. The following statements are equivalent to each other ;
(1) a is anti-integral over R,
(2) R[X] IK{X] ¢a(X) - IaR[X]

PROOF. (1)=(2): For any element g(X) of R(X) :kix; $«(X), we have g(X)@.(X) = f(X)
for some f(X) € R[X]. Let p : R[X]— R[a] be a natural ring homomorphism. Then
f(x) & Ker p. We consider the natural exact sequence

o
0— Ker p R[X] R[a] 0.

Since « is anti-integral over R, Ker o = l.¢.(X)R[X], (see[3]) and hence we have f(X)
= S(hig(X)t(X) for some h; € 1, t,(X) € R[X]. Cancelling #.(X), we see that g(X)
= Shti(X) € LR[X].
(2)=(1) : For any element f(X) & Ker p. we have {(X) = g(X)¢(X) for some g(X) €
K[X]. Thus g(X) € R[X] ki 9«(X) S [.R[X] by assumption. Hence we can write
g(X) = hti(X), hy € I, t(X) € R[X]. Therefore we obtain f(X) = 2i(hig«(X))t:(X)
€ l.¢«(X)R[X]. Thus « is anti-integral R.

Q.E.D.
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This observation leads to the following definition.

DEFINITION 2. If R[X] ki ¢«(X) € R[X], « is said to be a semi anti-integral
element over R.

If @ is anti-integral element over R, it is semi anti-integral element over R by
Proposition 1.

REMARK 3. Let R be the integral closure of R in K. By Gauss’s lemma, we have
easily seen 7 € R for all i, if « is integral over R.

Next we shall show that if @ is an integral and semi anti-integral element over R,
then « is an anti-integral element over R. For the purpose of this proof, we need the
following Proposition. If @ is an anti-integral element over R, we put H, = R[X] kx

pa(X).

PROPOSITION 4. The following statements are equivalent to each other ;
(1) e« is anti-integral over R,
(2) H.=I.R[X].

PROOF. (1)=(2) : Let g(X) be an arbitrary element of H,. Then, from the proof (1)=
(2) of Proposition 1, we can write g(X) = 2hti(X), h; € 1., t:(X) € R[X]. Hence we see
that g(X) € I.R[X]. Since one inclusion is obvious, we have desired result.
(2)=(1) : Assume that f(@) = 0 for some f(X) € R[X]. Then we have f(X) = g(X) ¢+(X)
for some g(X) € K[X]. Thus g(X) € R[X] ki1 ¢«(X) = H,. Hence we have g(X) =
2igiX!, g € l.. Note that g ¢.(X) € R[X] and deg(g: #.(X)) = d for all i. Therefore
f(X) is generated by l.¢.(X). Thus « is anti-integral over R.

Q.E.D.

As a consequence, we have :

THEOREM 5. If « is an integral and semi anti-integral element over R, then ¢ is an
anti-integral element over R, and hence A = R[] is a free R-module of rank d.

PROOF. Since « is integral over R, there exsists a monic polynomial f(X) € R[X] such
that f(a) = 0. First, we consider the case of deg f(X) = d. In this case, « is anti-integral
over R, and hence it is nothing to prove. Next we assume that n = deg f(X) > d. Let

f(X) = (X" GX" 4 e+ Ga) da(X)
— (Xn—d+ glxn—d—]+ cees Cn—d)(Xd‘*' 771xd—1+ ceee ”d)’

&, m € K. Since « is semi anti-integral over R, we see &, &, ...., &-a € R by the
definition. If we equate coefficients of X"™!, we see ;+& € R, and hence 7 € R.
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Proceeding in this way, we get 7 € R for all i. Thus ¢.(X) € R[X], so that « is
anti-integral over R.

Q.E.D.

REMARK 6. Let R be a Noetherian domain with quotient field K. Let L be an
extension a field K and Let @ be an element of L which is algebraic over K. Put d =
[K{a]:)K]. Assume that « is integral over R. Then there exsists a monic polynomial
f(X) € R[X] such that f(@) = 0. Then we have ;

deg f(X) =d © A is a free R-module of rank d
S ¢.(X) € R[X] & {(X) = ¢a(X)

Thus we obtain the following Proposition. we omit the proof.

PROPOSITION 7. {p € Spec(R)|A; is not flat over Ry} = {p € Spec(R)|p 2 I.}.
We assume that there exsists a monic polynomial f(X) € R[X] of degree d+1 such
that f(¢) = 0. Then we have f(X) = (X+ £)¢.(X), ¢ € K. It follows that ¢ € R. Thus,

PROPOSITION 8. The following statements are equivalent to each other.
() ¢€R
(2) ¢«(X) € R[X].
Therefore we have {p € Spec(R)|A; is not flat over Ry} = {p € Spec(R)|p 2 I.}.

PROOF. Let f(X) = X**'+a X+ -+ +aq and ¢o(X) = X'+ 7 X4 '+ -+ + 7. Since
f(X) = (X4 &) da(X), we deduce that a1 = {+7, as = o+ (2 £ 1= d) and as =
¢na. Note that a, € R(1 £ i £ d). Thus we see thet ¢ € R is equivalent to 71 € R. The
second half is easily seen the fact that A, is flat over R, if and only if ¢.(X) € R,[X].
This complete the proof.

QE.D.
REMARK 9. Consider the canonical exact sequence
0— P— R[X]—R[a]— 0.

Under the above condition, we have P = L.¢.(X)R[X]+{(X)R[X].
Finally, we have the following :

THEOREM 10. Let R be a Noetherial domain with quotient field K. Let L be an
extension of a field K and let @ be an element of L which is algebraic over K. Let d
= [K[e]:K] and ¢«(X) = X+ pX '+ -+ + 74 7 € K be a monic relation of a over
K. Assume that «¢ is integral over R. Let B be a intermediate ring between R and R.
Then the following statements are equivalent to each other ;
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(1) R[X] ko ¢«(X) € B[X],
(2) Ble] is flat over B and « is anti-integral over B.
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