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Abstract

The boundary matrix method for solving eigenvalue problems for the Laplace
operator is formulated in this paper. The numerical methods are based on a nonlinear
representation of the eigenvalue problem on the boundary. The nonlinear eigenvalue
problems are solved by using the Newton iteration method. Numerical examples for
simple models by the present methods are shown. From the numerical solutions the
present methods give us accurate numerical eigen-modes even for high eigenfrequen-
cies.

1. INTRODUCTION
Numerical methods for solving the eigenvalue problem in the form of

—Au(x) = Aulx) in (1)
where ) denotes a bounded region in R* (k = 1, 2, 3), with the boundary condition :
u(x) = g(x) on o (2)

have been studied by using the finite difference method, the finite element method and
the boundary element method, where 0§22 denotes the boundary of the domain 2, If we
seek approximate solutions of high eigenfrequencies with the finite difference and
finite element methods it is necessary to take a fine mesh and element discretization.
If the sizes of the finite diference mesh and the finite element are not enough small to
approximate the eigenfunction of the problem, the ghost solution (the inaccurate
solution) is occurred. In order to avoid the difficulty the Petrov Galerkin finite element
method was presented [1, 2, 3]. Appling those methods to the problem generate linear
algebraic eigenvalue problems. The boundary element approach is different from those
methods since it is necessary to use the fundamental solution of a differential operator
to formulate the boundary integral equation. If we take the fundamental solution for
the Laplace operator we obtain an integral equation formulation. In this case we also
obtain the linear algebraic eigenvalue problem [5]. The searching method with
boundary integral equation method with the fundamental solution for the Helmholtz
operator was presented by Niwa et al. [4]. For plate problems with the boundary
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integral equation method we refer to the text book by Kitahara [5]. The searching
method gives numerical eigen frequencies which satisfy the determinat free condition
of the matrix generated by the boundary element discretization. Since the variation of
the determinant near eigenvalues is steep and sensitive it is difficult the determin
eigenvalues accurately. On the other hand the boundary element approach the two
advantages :

1. It is unnecessary to discretize the interior of the given domain.

2. When we use fundamental solutions of the Helmholtz operators, we can avoid ghost
modes, since numerical eigenfunctions are expressed with the fundamental solution
with the eigenparameter.

The author presents numerical methods by using the fundamental solution of Helm-
holtz operator. For one-dimensional problems the boundary matrix method is for-
mulated. Taking account of the normalizing condition of wight coefficients for approx-
imation, nonlinear algebraic eigenvalue problems on the given boundary are induced by
appling the present methods. By using the Newton we obtain numerical solutions.
From numerical experiments we show that the present methods give accurate numeri-
cal solutions with small unknowns. Moreover it is shown that the boundary matrix
method has approximately uniform accuracy with respect to the frequency of vibra-
tion.

2. BOUNDARY MATRIX METHOD

The boundary matrix method to solve a one-dimensional eigenvalue problem is
formulated in this section. When we consider a one-dimensional boundary value
problem the approach which is similar to the boundary integral equation method does
not generate an integral equation, since the boundary of the region is consisted with
two points. For the one-dimensional case we obtain a 2 by 2 linear system by using the
boundary integral equation method. Therefore we call the approach for one-
dimensional problems the boundary matrix method. Let us formulate the boundary
matrix method for the eigenvalue problem :

_ g%zxi) —~ Pulx)=0  in(0,1) (3)

The linear combination of the fundamental solutions with some source points gives
us a solution of the equation (3). For the one-dimensional case the fundamental solution
is

2—1/1 exp(—iin), (4)

where x, y and n = |x — y| are the observation point, the sourse point and the distance
between them, respectively. If we consider the Dirichlet boundary condition : #(0) =
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u(1) = 0, the matrix equation is

% %exp( —iA) || co 0

= 5

! ' . (5)
WCXD( - M) W C1 0

where ¢, and ¢, are the weight coefficients for the linear combination of fundamental
solutions at two points. Adding the following normalizing equation of those weight
coefficients :

cé+ci= (6)

we obtain the nonlinear system (5)-(6) including three unknowns A, ¢, and ¢;. Each term
in the nonlinear system has its derivative on each unknown. Therefore it is possible to
apply the Newton iteration method to the system. The iteration procedure is

c'+1 o '
cl'+1p =3l t—Ja' el (7)
A" +1 A" A"

where J. is the Jacobian matrix of the nonlinear system, as follows :

Lo ey (SR e e
- 1 Cym __am __am
Im 5 exp( — iA™) 1 ;<exp(2/121/1 )+z' exp(z/lz/i ))CO,,, (8)
2¢q 2c8 0

4. NUMERICAL EXPERIMENTS
Numerical results for one-dimensional problems and a two-dimensional problem are
shown in this section. For the equation (3) set the boundary conditions :

(P1) u(0) = u(1) =0
(P2) u(0) =0 and du(x)/dx =0 at x = 1.

Numerical solutions of (P1) with the present method are shown in the table 1. For (P2)
numerical solutions with the present method are shown in the table 2. Exact solutions
are all real values. Numerical solutions have quite small imaginary part as calculating
errors.
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Table 1 Numerical solutions for (P1) with the boundary matrix method.

initial value of 4 Numerical sol Exact Re [sol.]/z

1 —3.14159—2.129.3X 10775 +x -1

10 9.42478+2.44906 X 10~'75 +3x 3

15 15.708+2.70891 X 10-'%5 +5x 5.00001
20 21.991—6.017927 X 10-2% +7x 6.99998
18 28.2743+8.97138 X 107'#/ +9x 8.99999
35 34.5575+5.40384 X 1072 +1lx 11

40 40.8407 +2.46519 X 10325 +13= 13

19 298.451—7.95246 X 1035 +957 94.9999

Table 2 Numerical solutions for (P2) with the boundary
matrix method.

initial value of A Numerical sol Re [sol.]/=
1 1.5708+7.42742 X 107145 0.5
5 4.71239+4.2825X 10755 1.5
9 7.85398—6.15995 X 10— 165 2.5
10 10.9956—2.61348 X 10~%; 3.50001

5. CONCLUSION

The boundary matrix method and for solving eigenvalue problems are formulated in
this paper. In the presen formulations the eigenparameter is involved nonliearly in the
discretized system. Therefore the Newton method is available to calculate approxi-
mate solutions of the system. Since we apply the fundamental solution of the Helm-
holtz operator the discretization is carried out only on the boundary for the given
domain. From numerical experiments we observe the following consequences :

1. The present methods are accurate numerical methods for solving the eigenvalue
problem.

2. Accuracy of the present methods is independent of the frequency of vibration.

The second result is very important property of the present method since the result
implies that we can avoid the ghost solution which is appeared in the finite difference
method and the finite element method.

REFERENCES

1) H. Sawami, M. Ikeuchi and K. Inoue, Note on the extended space for the weighting function in
eigenvalue problems, Memoirs of Research Insitute in Engineering, Ritumeikan University, 38,
(1980) 17.

2) M. Ikeuchi, K. Inoue, H. Sawami and H. Niki, Artitrarily shaped hollow wavegide analysis by the
a-interpolation method, SIAM J. Appl. Math., 40, (1981) 90.



Boundary Matrix Method for Eigenvalue Problems 5

3) H. Niki, H. Sawami, M. Ikeuchi and N. Okamoto, The alpha interpolation method for the
solution of an eigenvalue problem, J. Comp. Appl. Math., 8 (1982) 15.

4) Y. Niwa, S. Kobayashi and M. Kitahara, determination of eigenvalues by boundary element
methods, Developments in Boundary Element Methods-2 Chapter 6, Eds. P. K. Banerjee and R. P.
Shaw, Applied Science Publishers (1982).

5) M. Kitahara, Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics
and Thin Plates (Elsevier, Amsterdam-Oxford-New York-Tokyo, 1985).



