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Let R be a Noetherian integral domain, let K denote the quotient field of R and let
A be an R-algebra of finite type contained in K. Then A = R[F] for some fractional
ideal F of R. We can write F = I @ for some ideal I of R and some element @ in K. So
A is the form R[Ie] . In general, it seems natural to consider an extension like R[1 «] ,
where I is an ideal of R and ¢ is an element in some extension of R, where @ does not
necessarily belong to K. We say that R[I @] is a pseudo-simple extension of R defined
by I and « if depth R,>1 for any prime ideal P contaning I. Our objective of this paper
is to study the ring like R[I @] . In particular, we are interested in the case ais
anti-integral over R. The anti-integrality is studied in®.

Throughout this paper, we use the follwing notation unless otherwise specified : let
R be a Noetherial domain,

K the quotient field of R, and
R’ the integral closure of R in K.

For a non-zero element « of K, put
R:ira:={a€R:acseR}=a¢'RNR).

In this paper all rings are assumed to be commutative and to have an identity, and
our general references for unexplained technical terms are? and®

We start with recalling the follwing definition which in seen in®.

DEFINITION. For a non-zero element o in K, we set
R(e) =R [e] N R[1/]
in K. We say that « is anti-integral over R if R(a)=R.
THEOREM 1. Asseume that R is a local domain with the maximal ideal m and let «

be a non-zero element in K. Assume that ¢ is anti-integral over R and that R[a]=
R{me] . Thene <= Ror 1 /e < R.
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PROOF. Since a=R[me] , we can write
a = b0+b1 a+...+bnan,

where by € m' for alli> 0 and b, € R.

Case I: Assume thatby &€ m. Then 1 —bo(1/2) =bi+ba + ...+ b ' € R[]l N
R[1/a] = R(e@) = R. Hence 1 —by (1/a) € R. Since by is a unit in R, we have 1/¢ € R.
Case II: Assume that by € m. Then we have bo+ (bi—1) @+... +baan=0. Put {(X) =
baX"+...+b:X?+ (bi—1)X+bo. Then b,—1 & m. Thus C(f(X)) =R, where C( )
denotes the content ideal. Take h(X) € R(X) which satisfies h(e) = 0, C(h(X)) =R
and deg h(X) is minimal among such ones. Write

h(X) = caXa+...+cowithc, € R and
cad®+...+co=0 (*)

If ¢o is a unit in R, then by the same argument as in Case I, we have that 1/e< R.
Assume that co € m. Then there exists s(0 < s = d) such that cs is a unit in R.
From (%), we havecsa® *"'+...+cs@+cs-1 = —(cs20”'+...+ca ™) € R[e] N
R [1/a] = R(a) = R. Thus there exists v € R such that caa® **'+...+cse+v = 0. By
the minimality of deg h(X), we get d—s+1 = d, that is, s = 1. Hence ¢, is a unit in R.
Consider the equality caa®'+...4+c1 = —(1/a)co € R[a] N R[1l/a] = R(a) = R. Put t
= cqa®'+...+c1 = —(1/a)co. If ci—t & m, then the polynomial caX® '+...4+ci—t €
R [X] gives a contradiction to the minimality of deg h (X). Soc;—t € m. Hence t € m
because c; is a unit in R. Thust = —(1/a)co implies at+co = 0 and hence @ € R.[]

COROLLARY1.1. Assume that (R, m) be a normal local domain and let a be a

non-zero element in K such that wneither a nor 1ja belongs to R. Then R[al+
Rlima] .

PROOF. Since R is normal and R(e) is intergral over R, R(a) = R, that is, any ¢ € K
is anti-integral over R. So our conclusion follows Theorem 1 .[]

COROLLARY 1.2. Let R be a Noetherian domain and let I be an ideal of R and let
a be a non-zevo element in K which is anti-integral over R. If R [a] = R [la], then
Rr (@] is flat over Rp for any P € Spec(R) with P D I.

PROOF. We may assume that R is a local domain with the maximal ideal m. Since
R[e] = R[le]implies R [@] = R [ma], so that R [a] is flat over R by Theorem 1. []

COROLLARY 1.3. Assume that (R, m) is a local domain. Then the following state-
ments arve equivalent:

(@ R is a DVR;

(b) every a in K\{0} is anti-integral over R and R [a] = R [ma].
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PROOF. (a)= (b) follows from Corollary 1.1. (b)= (a):Any non-zero element ¢ in K, &
€ R or 1/e € R by Proposition 1, which asserts that R is a valuation domain. Since
R is Noetherian, R is a DVR. []

LEMMA 2. Let I be an ideal of R and P a prime ideal contaning I. Then if depth
Re > 1, then grade IRp > 1.

PROOF. We may assume that (R, m) is a local ring Takea & [,a # 0 and letaR = Q,

N ... N Qnbe a primary decomposition with P; = J/Q.. In this case depth R, = 1 for all
P = P.. Since P: D [ by assumption, we have I € P, U... U P.. Hence there exists b &
I\ U P.. It is easy to see that {a,b} is a regular sequence. Thus grade 1 > 1.

DEFINITION. Let I be an ideal of R and let @ be an element which belongs to some
extension of R which is not necessarily equal to K. Consider the extension A = R [Ia]
of R. We say that A is a pseudo-simple extension of R defined by I and a if [ = R
or depth Rp > 1 for any prime ideal P contaning 1.

Any simple extension R [a] (where « belongs to some extension of R) is a pseudo-
simple extension of R.

In the next theorem, we use the following fact : for ¢ € K, R : re is a divisorial ideal
of R, that is, R:k (R :ra) contains a.

THEOREM 3. Let a be an element in some extension of R. Assume that A = R [la]

is a pseudo-simple extension of R defined by I and a. If A is flat over R, then A =
R[], that is, A is a simple extension genevated by a.

PROOF. We may assume that (R, m) is a local ring. By Lemma 2, there exist a, b &
I which forms a regular sequence. It is obvious that aa, ba € A. Since A is flat over
R, either a, b form an A-regular sequence or (a, b) A = A. In the former case, Aaa
contains a, b and hence A : a@ = A because A : sz is a divisorial ideal of A. Thus ¢ €
A. In the later case, (a,b)A = A implies that 1 = a f+b y for some 5, y € A. Thus @
= (a @)B+(b @)y € A. Therefore in any case, we conclude ¢ € A. [J

In the following examples, let k dente a field and let k [x, y] denote a polynomial
ring.

EXAMPLE 4.1. Let R = k[x,y] and @ = 1/xy. Since 1/ € R, R = R(a) and hence «
is anti-integral over R. By definition, R [Ia]is a pseudo-simple extension of R and
R[Ie] = R[(x,y)(1/xy)] = Rla],a simple extension. Moreover since l/a € RR =
R[1/e] — R [1/a,a] = R [e]is obtained by localization and hence is flat. This shows
that R [1e] = R [«] does not always imply I = R.
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EXAMPLE 4.2. Let R = k[x, y] and let A = R [x/y, y/x] = R[(x?% v?) (1/xy)], which
is a pseudo-simple extension of R. It is not hard to see that A is not a simple extension

of R. Since 1/a = xy € R, is anti-integral over R. By Theorem 3, A is not flat over
R.

EXAMPLE 4.3. Let I be an ideal (x,y) of R = k[x,y] and let « is an element in some
extension of R which satisfies y?e?+(x—1)a+1 = 0. Then [K(a): K] = 2, that is, a &
K’ R[le] is a pseudo-simple extension of R and R [la] = R[xg«, ya]. Since @ € R[1a],
we have R [Ia] = R [a]. Since 1/ is a zero of the single monic polynomial and 1/a €
R[a)],R— R[1/a]is flat and R [1/ae] — R[1/a,a] = R [a]is a localization. Hence R —
R [a] is flat.

LEMMA 5. Let a be an element of R and let a be a non-zero element which is
algebraic over R and let ¢po(X) = X+ 1 X4 ' +...+ pa be the minimal polynomial of
a in K[ X]. Assume that the kernel of the canonical homomorphism R[X]— R [a] is
generated by some polynomials of degree d. Put Iis) = N 15:54(R : ptt:). Then

(1) if a € La, then aa is integral over R;

(ii) #f aa is integral over R, then a € VI (a.

PROOF. (i) Put b, = azs € R. Thenaa®+bie®'+...+bs = 01is a relation of a over R.
From this, we get (a@)?+abi(aa)® '+...+a%ba = 0. So aa is integral over R.

(ii) Let(a@)"+ci(a@)" '+...+ca = 0 be a relation of a @ over R and put h(X) = a"X"
+c;a"'+...+ca. Then h(@) = 0 and we can write h(X) = 3 fi(X) g (X) with f; () = 0,
deg f, (X) = d for all i. Since every coefficients of f; (X) belong to Ijs}, a" € Ijs). Thus a
€ V. O

PROPOSTITION 6. Let a be a non-zevo element which is algegraic over R and let A
= R [Ia] be a pseudo-simple extension of R defined by I and a. Assume that the kernel
of the canonical homomorphism R [X]— R [a] is generated by some polynomials of
degree d. If A is integral over R, then a is intergral over R.

PROOF. We have only to show that « is integral over R, for all P € Spec(R). If P does
not contain I, A, = R, [@] implies that « is integral over R,. So we may assume that R
is a local domain and I # R. Since A is a pseudo-simple extension, we have gradeI >
1, and hence there exists a regular sequence a, b in I. By assumption ae, be are integral
over R. Thus a, b € /I, by Lemma 5. But V14 is a divisorial ideal, which implies that
VIis) = R and hence I;,; = R. Thus ¢.(X) € R [X]. Therefore « is integral over R.[]

PROPOSITION 7. Let A = R [la] be a pseudo-simple extension of R defined by I and
a € K. Assume that a is anti-integral over R. Then the following statements are
equivalent:
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(@) A is integral over R;
(b) a is integral over R;

) A=R;
d R=PRla];
(e) I C R:xre.

PROOF. (a)= (b) follows from Proposition 6 . (b)=> (d) follows from [3, (1. 3)]. (d)= (¢),
(d)=> (b), (e)=> (c) and (b) = (a) are trivial.[]

COROLLARY 7.1. Any proper pseudo-simple extension R [la] of R defined by an ideal
I and an anti-integral element « is not integral over R.
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