Notes on Anti-integral Elements and Pseudo-smiple Extensions

Susumu ODA* and Ken-ichi Yoshida**

*Uji-Yamada High School Uraguchi Ise, Mie 516 Japan

**Department of Applied Mathematics Okayama University of Science
Ridai-cho 1-1, Okayama 700, Japan

(Received September 30, 1991)

Let R be a Noetherian integral domain, let K denote the quotient field of R and let A be an R-algebra of finite type contained in K. Then A = R[F] for some fractional ideal F of R. We can write $F = I \alpha$ for some ideal I of R and some element α in K. So A is the form $R[I\alpha]$. In general, it seems natural to consider an extension like $R[I\alpha]$, where I is an ideal of R and α is an element in some extension of R, where α does not necessarily belong to K. We say that $R[I\alpha]$ is a pseudo-simple extension of R defined by I and α if depth $R_p > 1$ for any prime ideal P containing I. Our objective of this paper is to study the ring like $R[I\alpha]$. In particular, we are interested in the case α is anti-integral over R. The anti-integrality is studied in³⁾.

Throughout this paper, we use the following notation unless otherwise specified: let R be a Noetherial domain,

K the quotient field of R, and R' the integral closure of R in K.

For a non-zero element α of K, put

$$R:_R \alpha := \{ a \in R : a \alpha \in R \} (= \alpha^{-1}R \cap R).$$

In this paper all rings are assumed to be commutative and to have an identity, and our general references for unexplained technical terms are¹⁾ and²⁾

We start with recalling the following definition which in seen in³⁾.

DEFINITION. For a non-zero element α in K, we set

$$R(\alpha) = R[\alpha] \cap R[1/\alpha]$$

in K. We say that α is **anti-integral** over R if $R(\alpha) = R$.

THEOREM 1. Asseume that R is a local domain with the maximal ideal **m** and let α be a non-zero element in K. Assume that α is anti-integral over R and that $R[\alpha] = R[\mathbf{m}\alpha]$. Then $\alpha \in R$ or $1/\alpha \in R$.

PROOF. Since $\alpha \in \mathbb{R}[\mathbf{m}\alpha]$, we can write

$$\alpha = b_0 + b_1 \alpha + ... + b_n \alpha_n$$

where $b_i \in \mathbf{m}^i$ for all i > 0 and $b_0 \in R$.

Case I: Assume that $b_0 \in \mathbf{m}$. Then $1-b_0\left(1/\alpha\right) = b_1+b_2\alpha+...+b_n\alpha^{n-1} \in R\left[\alpha\right] \cap R\left[1/\alpha\right] = R\left(\alpha\right) = R$. Hence $1-b_0\left(1/\alpha\right) \in R$. Since b_0 is a unit in R, we have $1/\alpha \in R$. Case II: Assume that $b_0 \in \mathbf{m}$. Then we have $b_0+(b_1-1)\alpha+...+b_n\alpha_n=0$. Put $f(X)=b_nX^n+...+b_2X^2+(b_1-1)X+b_0$. Then $b_1-1 \in \mathbf{m}$. Thus C(f(X))=R, where C(x)=0 denotes the content ideal. Take $h(X) \in R(X)$ which satisfies $h(\alpha)=0$, C(h(X))=R and deg h(X) is minimal among such ones. Write

$$\begin{split} h(X) &= c_{\mathsf{d}} X_{\mathsf{d}} + \ldots + c_0 \text{ with } c_{\mathsf{i}} \in R \text{ and } \\ c_{\mathsf{d}} \alpha^{\mathsf{d}} + \ldots + c_0 &= 0 \quad (*). \end{split}$$

If c_0 is a unit in R, then by the same argument as in Case I, we have that $1/\alpha \in R$. Assume that $c_0 \in \mathbf{m}$. Then there exists $s(0 < s \le d)$ such that c_s is a unit in R.

From (*), we have $c_d \alpha^{d-s+1} + ... + c_s \alpha + c_{s-1} = -(c_{s-2}\alpha^{-1} + ... + c_0\alpha^{-s+1}) \in R[\alpha] \cap R[1/\alpha] = R(\alpha) = R$. Thus there exists $v \in R$ such that $c_d \alpha^{d-s+1} + ... + c_s \alpha + v = 0$. By the minimality of deg h(X), we get d-s+1=d, that is, s=1. Hence c_1 is a unit in R. Consider the equality $c_d \alpha^{d-1} + ... + c_1 = -(1/\alpha)c_0 \in R[\alpha] \cap R[1/\alpha] = R(\alpha) = R$. Put $t=c_d \alpha^{d-1} + ... + c_1 = -(1/\alpha)c_0$. If $t=c_d \alpha^{d-1} + ... + c_1 = -(1/\alpha)c_0$. If $t=c_d \alpha^{d-1} + ... + c_1 = -(1/\alpha)c_0$. If $t=c_d \alpha^{d-1} + ... + c_1 = -(1/\alpha)c_0$ implies $t=c_d \alpha^{d-1} + ... + c_0 = 0$ and hence $t=c_d \alpha^{d-1} + ... + c_0 = 0$ and hence $t=c_d \alpha^{d-1} + ... + c_0 = 0$ and hence $t=c_d \alpha^{d-1} + ... + c_0 = 0$ and hence $t=c_d \alpha^{d-1} + ... + c_0 = 0$

COROLLARY1.1. Assume that (R, \mathbf{m}) be a normal local domain and let α be a non-zero element in K such that neither α nor $1/\alpha$ belongs to R. Then $R[\alpha] \neq R[\mathbf{m}\alpha]$.

PROOF. Since R is normal and R(α) is integral over R, R(α) = R, that is, any $\alpha \in K$ is anti-integral over R. So our conclusion follows Theorem 1. \square

COROLLARY 1.2. Let R be a Noetherian domain and let I be an ideal of R and let α be a non-zero element in K which is anti-integral over R. If $R[\alpha] = R[I\alpha]$, then $R_P[\alpha]$ is flat over R_P for any $P \in Spec(R)$ with $P \supset I$.

PROOF. We may assume that R is a local domain with the maximal ideal **m**. Since $R[\alpha] = R[I\alpha]$ implies $R[\alpha] = R[m\alpha]$, so that $R[\alpha]$ is flat over R by Theorem 1. \square

COROLLARY 1.3. Assume that (R, m) is a local domain. Then the following statements are equivalent:

- (a) R is a DVR;
- (b) every α in $K \setminus \{0\}$ is anti-integral over R and $R[\alpha] = R[\mathbf{m}\alpha]$.

PROOF. (a) \Rightarrow (b) follows from Corollary 1.1. (b) \Rightarrow (a):Any non-zero element α in K, $\alpha \in \mathbb{R}$ or $1/\alpha \in \mathbb{R}$ by Proposition 1, which asserts that R is a valuation domain. Since R is Noetherian, R is a DVR. \square

LEMMA 2. Let I be an ideal of R and P a prime ideal containing I. Then if depth $R_P > 1$, then grade $IR_P > 1$.

PROOF. We may assume that (R, \mathbf{m}) is a local ring Take $a \in I$, $a \neq 0$ and let $aR = Q_1 \cap ... \cap Q_n$ be a primary decomposition with $P_i = \sqrt{Q_i}$. In this case depth $R_p = 1$ for all $P = P_i$. Since $P_i \supset I$ by assumption, we have $I \subset P_1 \cup ... \cup P_n$. Hence there exists $b \in I \setminus U$. It is easy to see that $\{a,b\}$ is a regular sequence. Thus grade I > 1.

DEFINITION. Let I be an ideal of R and let α be an element which belongs to some extension of R which is not necessarily equal to K. Consider the extension $A = R[I\alpha]$ of R. We say that A is a **pseudo-simple** extension of R defined by I and α if I = R or depth $R_P > 1$ for any prime ideal P containing I.

Any simple extension R [α] (where α belongs to some extension of R) is a pseudo-simple extension of R.

In the next theorem, we use the following fact : for $\alpha \in K$, $R :_R \alpha$ is a divisorial ideal of R, that is, $R :_R (R :_R \alpha)$ contains α .

THEOREM 3. Let α be an element in some extension of R. Assume that $A = R[I\alpha]$ is a pseudo-simple extension of R defined by I and α . If A is flat over R, then $A = R[\alpha]$, that is, A is a simple extension generated by α .

PROOF. We may assume that (R, \mathbf{m}) is a local ring. By Lemma 2, there exist a, $b \in I$ which forms a regular sequence. It is obvious that $a\alpha$, $b\alpha \in A$. Since A is flat over R, either a, b form an A-regular sequence or (a, b) A = A. In the former case, $A:_A\alpha$ contains a, b and hence $A:_A\alpha = A$ because $A:_A\alpha$ is a divisorial ideal of A. Thus $\alpha \in A$. In the later case, (a,b)A = A implies that $1 = a \beta + b \gamma$ for some β , $\gamma \in A$. Thus $\alpha = (a \alpha)\beta + (b \alpha)\gamma \in A$. Therefore in any case, we conclude $\alpha \in A$. \square

In the following examples, let k dente a field and let k [x, y] denote a polynomial ring.

EXAMPLE 4.1. Let R = k[x,y] and $\alpha = 1/xy$. Since $1/\alpha \in R$, $R = R(\alpha)$ and hence α is anti-integral over R. By definition, $R[I\alpha]$ is a pseudo-simple extension of R and $R[I\alpha] = R[(x,y)(1/xy)] = R[\alpha]$, a simple extension. Moreover since $1/\alpha \in R$, $R = R[1/\alpha] \to R[1/\alpha,\alpha] = R[\alpha]$ is obtained by localization and hence is flat. This shows that $R[I\alpha] = R[\alpha]$ does not always imply I = R.

EXAMPLE 4.2. Let R = k[x, y] and let $A = R[x/y, y/x] = R[(x^2, y^2)(1/xy)]$, which is a pseudo-simple extension of R. It is not hard to see that A is not a simple extension of R. Since $1/\alpha = xy \in R$, α is anti-integral over R. By Theorem 3, A is not flat over R.

EXAMPLE 4.3. Let I be an ideal (x,y) of R = k[x,y] and let α is an element in some extension of R which satisfies $y^2\alpha^2 + (x-1)\alpha + 1 = 0$. Then $[K(\alpha):K] = 2$, that is, $\alpha \in K$. R $[I\alpha]$ is a pseudo-simple extension of R and R $[I\alpha] = R[x\alpha, y\alpha]$. Since $\alpha \in R[I\alpha]$, we have R $[I\alpha] = R[\alpha]$. Since $1/\alpha$ is a zero of the single monic polynomial and $1/\alpha \in R[\alpha]$, $R \to R[1/\alpha]$ is flat and $R[1/\alpha] \to R[1/\alpha, \alpha] = R[\alpha]$ is a localization. Hence $R \to R[\alpha]$ is flat.

LEMMA 5. Let a be an element of R and let α be a non-zero element which is algebraic over R and let $\phi_a(X) = X^d + \mu_1 X^{d-1} + ... + \mu_d$ be the minimal polynomial of α in K[X]. Assume that the kernel of the canonical homomorphism $R[X] \to R[\alpha]$ is generated by some polynomials of degree α . Put $I_{[\alpha]} = \bigcap_{1 \le i \le d} (R : {}_R\mu_i)$. Then

- (i) if $a \in I_{[\alpha]}$, then $a\alpha$ is integral over R;
- (ii) if aa is integral over R, then $a \in \sqrt{I}_{[a]}$.

PROOF. (i) Put $b_i = a\mu_i \in R$. Then $a\alpha^d + b_i\alpha^{d-1} + ... + b_d = 0$ is a relation of α over R. From this, we get $(a\alpha)^d + ab_i(a\alpha)^{d-1} + ... + a^db_d = 0$. So $a\alpha$ is integral over R. (ii) Let $(a\alpha)^n + c_1(a\alpha)^{n-1} + ... + c_n = 0$ be a relation of a α over R and put $h(X) = a^n X^n + c_1 a^{n-1} + ... + c_n$. Then $h(\alpha) = 0$ and we can write $h(X) = \sum f_i(X) g_i(X)$ with $f_i(\alpha) = 0$, deg $f_i(X) = d$ for all i. Since every coefficients of $f_i(X)$ belong to $I_{[\alpha]}$, $a^n \in I_{[\alpha]}$. Thus $a \in \sqrt{I_{[\alpha]}}$. \square

PROPOSTITION 6. Let α be a non-zero element which is algebraic over R and let $A = R[I\alpha]$ be a pseudo-simple extension of R defined by I and α . Assume that the kernel of the canonical homomorphism $R[X] \to R[\alpha]$ is generated by some polynomials of degree α . If A is integral over R, then α is integral over R.

PROOF. We have only to show that α is integral over R_p for all $P \in Spec(R)$. If P does not contain I, $A_p = R_p[\alpha]$ implies that α is integral over R_p . So we may assume that R is a local domain and $I \neq R$. Since A is a pseudo-simple extension, we have grade I > 1, and hence there exists a regular sequence a, b in I. By assumption $a\alpha$, $b\alpha$ are integral over R. Thus a, $b \in \sqrt{I_{\{\alpha\}}}$ by Lemma 5. But $\sqrt{I_{\{\alpha\}}}$ is a divisorial ideal, which implies that $\sqrt{I_{\{\alpha\}}} = R$ and hence $I_{\{\alpha\}} = R$. Thus $\phi_{\alpha}(X) \in R[X]$. Therefore α is integral over R. \square

PROPOSITION 7. Let $A = R[I\alpha]$ be a pseudo-simple extension of R defined by I and $\alpha \in K$. Assume that α is anti-integral over R. Then the following statements are equivalent:

- (a) A is integral over R;
- (b) α is integral over R;
- (c) A = R;
- (d) $R = R[\alpha]$;
- (e) $I \subset R : {}_{R}\alpha$.

PROOF. (a) \Rightarrow (b) follows from Proposition 6 . (b) \Rightarrow (d) follows from [3, (1.3)]. (d) \Rightarrow (c), (d) \Rightarrow (b), (e) \Rightarrow (c) and (b) \Rightarrow (a) are trivial.

COROLLARY 7.1. Any proper pseudo-simple extension $R[I\alpha]$ of R defined by an ideal I and an anti-integral element α is not integral over R.

REFERENCES

- 1) H. Matsumura, 'Commutative Algebra', Benjamin, New York (1970).
- 2) H. Matsumura, 'Commutative Ring Theory', Cambridge Univ. Press, Cambridge (1986).
- 3) S. Oda and K. Yoshida, Anti-integral extensions of Noetherian domains, Kobe J. Math, 5 (1988) 43—56.