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In order to discuss the existence of an almost periodic solution in anintegrodif-
ferential equation with infinite delay, we have discussed the relationship between
the total stability with respect to a certain metric 0 and the separation condition
with respect to o0 2).

In this paper, we shall discuss a relationship between the p-separation condition

and uniformly asymptotic stability property in a certain sense.

We shall consider a system of integrodifferential equations
0
s(O=fCt, x(D+ [ _F, s, x(t+s), x(D)ds, (1)

where f: RXR"— R" is continuous and is almost periodic in t uniformly for x€ER",
and F(¢t, s, x, y) is continuous on RX (—o0, 0] XR"XR" and is almost periodic in
t uniformly for (s, x, y) ER*=(—o, 0] XR"XR" For the definition and the
properties of almost periodic functions with parameters, see 4). If x is a function
defined on (—o°, a), x, is defined by the relation x,(s)=x(t+s), —<s=0. Let
|x| be any norm of x in R". BC denotes the vector space of bounded continuous

functions mapping (—o0, 0] into R", and for any @, ¢&BC, we set
0(8, =1 0,(¢, §)/2"(1+0,(8, P)],

where 0,(¢, ¢)= sup [¢(s)—¢(s)|. Clearly, p(¢* ¢)—0 as k— if and only
<ss0

Tm=s=>

if ¢*(s)—>¢ (s) uniformly on any compact subset of (—c0, 0] as k—>c. Moreover,
we denote by (BC, p) the space of bounded continuous functions ¢ : (—o, 0]—=R"
with metric p.

For system (1), we make the following assumptions :

(H,) For any €>0 and any compact set B in R", there exists an S=S(e, B) >0
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such that
[CIFG, s, x(t+s), x()|dss e for all tER,

whenever x(g) is continuous and x(o)EB for all g<t.
(H,) System (1) has a bounded solution u(¢) defined on [0, o©) which passes
through (0, ¢°, ¢°=BC.

Remark 1. 1t follows from (H,) that for any compact set B in R", there exists
an L(B) >0 such that

0
[ IR, s, x(t+9), x(0)1dsSLB) for all tER,
whenever x(g) is continuous and x(¢)EB for all o<t. Moreover,
0
f_ F(t, s, x(t+s), x(t))ds is continuous in ¢, whenever x(0) is continuous and

bounded for o<t.

Under assumption (H,), for any ¢t,&R and any ¢&=BC, there exists a solution
of (1) which passes through (¢,, ¢). Moreover, a solution x(¢) can be continu-
able up to t=oc if it remains in a compact set in R".

Denote by Q(f, F) the set of all limiting functions (g, G) such that for some
sequence {t,}, t,—~> as k—>o, f(t+t,, x)—~>g(t, x) uniformly on RXS for any
compact subset S in R" and F(t+¢t,, s, x, y)—~>G(¢, s, x, y) uniformly on R XS*

for any compact subset S* in R* as k—>o. Then a system

() =g, x())+ J‘OwG(t, s, x(t+s), x(t))ds (2)

is called a limiting equation of (1) when (g, G EQ(f, F). Clearly, if (g, G)E
Qf, F), g(t, x) is almost periodic in t uniformly for xER" and G(¢, s, x, y) is

almost periodic in t uniformly for (s, x, Y ER".

Remark 2. When F(¢t, s, x, vy) satisfies condition (H,), any G&€ Q (F) satisfies
condition (H,) for the same S=S(e&, B)>0 as for F, that is,

J‘:i |G(t, s, x(t+s), x(t))|ds=e for all tER,

whenever x(0) is continuous and x(0)EB for all o<¢.

Let K be a compact set in R" such that u(¢)EK for all tER, where u(t) =¢°(t)
for t<0. If x(¢) is a solution such that x(¢)EK for all tER, we say that x is
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in K.

Definition 1. We say that system (1) satisfies the p-separation condition in K,
if for each (g, G)EQ(f, F), there exists a A(g, G) >0 such that if x and y are

distinct solutions of (2) in K, then we have
olx,, yo=24(g, G) for all tER. (3)

If system (1) satisfies the p-separation condition in K, then we can choose a
positive constant A, independent of (g, G) for which p(x,, y) =2, for all tER,
where x and y are distinct solutions of (2) in K. We shall call A, the o-separa-

tion constant in K.

Definition 2. A solution x(¢) of (1) in K is said to be relatively totally (K, 0)-
stable, if for any €>0 there exists a 6(&) >0 such that po(x,, y,)<eé& for all
t=t, whenever o(x, , y,)<d(e) at some t,&R and p(t) is any continuous func-
tion which satisfies [p(t)|<6(e) for t=t,. Here y is a solution through
(to, y.,) of

(@) =f(, x()+ J‘LF(t, s, x(t+s), x(£))ds+p(t)

such that y, ()€K for s<0 and y(t)EK for t=t,.
In the case where p(t)=0, this gives the definition of the relative uniform

(K, p)-stability of x(¢).
Hamaya and Yoshizawa 2) have obtained the following result.

Proposition. Under assumptions (H,) and (H,), if system (1) satisfies the o-
separation condition in K, then for any (g, G)EQ(f, F), any solution x of (2)
in K is relatively totally (K, p)-stable. Moreover, we can choose the number
&() in Definition 2 so that 6( &) depends only on € and is independent of (g, G)

and solutions.
Theorem 1. Under assumptions (H,) and (H,), suppose that system (1) satisfies
the o-separation condition in K. If w(t) is a solution of (1) such that w(t)EK

for all tER, then w(t) is almost periodic.

Proof. By proposition, solution w(t) of (1) is relatively totally (K, p)-stable,
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because (f, FDEQ(f, F). Then w(t) is asymptotically almost periodic on [0, ©0)
by Theorem 1 in 1). Thus, it has the decomposition w(t) =p(t) +q(t), where
p(t) is almost periodic in t, q(t) is continuous and q(t)—0 as t—>oo. Since
w(t)EK for all tER, p(t) is a solution of (1) in K. If w(¢,)#p(t,) at some
t1, we have two distinct solutions of (1) in K. Thus we have o(w,, p)=21,>0
for all tER, where A, is the p-separation constant. However, w(t)-p(¢t)—0 as
t—, and hence p(w,, p)—>0 as t—o. This contradiction shows w(t)=p(t) for

all tER.

Definition 8. A solution x(¢t) of (1) in K is said to be relatively uniformly
asymptotically (K, p)-stable, if it is relatively uniformly (K, p)-stable and if
there exists a §,>0 and for any &>0 there exists a T(¢) >0 such that if o(x,,
¥.) < 0o at some t,ER, then p(x,, y,)<e&e for all t=t,+T(e), where y is a solu-
tion through (¢,, y.,) of (1) such that y, (s) for s<0 and y(t)EK for all t=t,.

We shall show that the p-separation condition will be characterized in terms of
relatively uniformly asymptotic (K, p)-stability of solutions in K of limiting
equations. For ordinary differential equations, this kind of problems has been

discussed by Nakajima 3).

Theorem 2. Under assumptions (H,) and (H,), system (1) satisfies the p-separa-
tion condition in K if and only if for any (g, G)EQ (f, F), any solution x of (2)
in K is relatively uniformly asymptotically (K, p)-stable with a common triple

(8o, 6(+), T(*)).

Proof. We suppose that system (1) satisfies the p-separation condition in K.
Then it follows from proposition 1 that for any & >0, there exists a (&) >0
such that for any (g, G)EQ(f, F) and any solution x(¢) of (2) in K, if o(x,,,
¥:,) <6(e) at some t, &R, then po(x,, y)<e for all t=t,, where y(¢t) is a
solution of (2) such that y, ()€K for s<0 and y(¢)EK for t=t,. Now let &,
be a positive constant such that 6,< 6(A,/2), where A, is the p-separation
constant. For this &,, we shall show that for any &>0, there exists a T(e) >0
such that for any (g, G)EQ(f, F) and any solution x(¢t) of (2) in K, o(x,, y)< €
for all t=t,+T(e) whenever o(x, , y.,) <&, at some t,ER, where y(¢) is a
solution of (2) such that y, (s)EK for all s<0 and y(t)EK for all t=t,.
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Suppose not. Then there exists an &, 0< €< 6,/2, and sequences {(g,, G.)},
{x*}, {y*, {s:} and {¢,} such that (g,, GLEQ(, F), x*(¢t) is a solution in K of

() =g.x(t, x())+ J‘LGk(t, s, x(t+s), x(¢))ds (4)
and that t,=s, Tk,

o(xt, ¥ )< 6,< (/D) (5)
and

p(df, yi)=e, (6)

where y*(¢) is a solution of (4) such that y:(s)EK for all s<0 and y*(¢)EK for

all t=s,. Since (5) implies o(x*, ¥ < 1,/2 for all t=s,, we have
esp(xt, ¥i)=2/2. (7)
If we set w*(t)=x*(t+t,) and 2*(¢t) =y*(t+t,), then w*(¢) is a solution in K of
() =g (t+t,, x())+ ﬁka(Htk, s, x(t+s), x(t))ds (8)

and z*(¢) is defined for t=—k and is a solution of (8) such that 2* ,(s) =K for
all s<0 and z*(¢)EK for all t=—k. Since (g,(t+t,, x), G (t+t., s, x, y))E
Q (f, F), taking a subsequence if necessary, we can assume that w*(t)—w(t)
uniformly on any compact interval in R, z*(¢)—>z(¢) uniformly on any compact
interval in R, g,(t+t,, x)—h(t, x) uniformly on RXK and G,(t+t,, s, x, y)—
H(t, s, x, y) uniformly on RXS*XKXK for any compact set S* in (—oo, 0] as
k—>, where (h, H)EQ(f, F). Then, by the same argument as in the proof of

Lemma 2 in 2), w(t) and 2(¢) are solutions in K of

£®=ht, xO)+ [ H(t, s, x(t+s), x(D)ds. 9
On the other hand, we have

p(wo, 2z)=lim p(wt, 2) =lim p(xl, , ).
Thus, it follows from (7) that

e<p(w,, z0) = A,/2. 10)

Since w(t) and z(¢) are distinct solutions of (9) in K, (10) contradicts the po-
separation condition. This shows that for any (g, G)EQ(f, F), any solution x
of (2) in K is relatively uniformly asymptotically (K, o0)-stable with a common
triple (8o, 8(=), T(*)).

Now we assume that for any (g, G)E Q(f, F), any solution of (2) in K is
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relatively uniformly asymptotically (K, p)-stable with a common triple (&,,
p(+), T(+)). First of all, we shall see that any two distinct solutions x(¢) and
y(t) in K of a limiting equation of (1) satisfy

lim p(x,, y)2 8. (1

Suppose not. Then for some (g, G)EQ(f, F), there exist two distinct solutions
x(t) and y(¢) of (2) in K which satisfy

lim o(x,, y) <. 12

Since x(t) #y(t), we have |x(t)) —y(t,) | =&>0 at some t,. Thus we have
p(x,,, y.)=€e/2(1+¢€). By (12), there exists a t; such tha£ p(x, , y.,)<0J, and
t<to—T(e/4(1+¢€)), where T(+) is the number for relatively uniformly asymptotic
(K, p)-stability. Since x(t) is relatively uniformly asymptotically (K, p)-stable,
we have o(x. , y.,)<e&/4(1+e), which contradicts o(x.,, y.)=€/2(1+¢€). Thus
we have (11).

For any solution x(¢) in K, there exist positive constants ¢ and L* such that

lx(6)I<c and |x(¢)| <L* for all tER. Denote by X the set

X={¢p=BC: ¢(s) is a function such that |¢(s)|<c¢ for s€(—o, 0]
and [@(s) —@(s) | SL*|s,—s;| for all s;, s;&(—o0, 0]}.

Then X is compact in (BC, p). Thus, there are finite number of coverings which
consist of my balls with diameter 6,/4. We shall see that the number of distinct

solutions of (2) in K is at most m,. Suppose that there are m,+1 distinct

solutions x¥’(¢) (=1, 2, ---, me+1). By (11), there exists a t, such that
o(xt?, x{) 2z 60/2 for i#). 13
Since x{, j=1, 2, -, me+1 are in X, some two of these, say x$O, x, (i#)), are

in one ball and hence o(x{), x?’) < &,/4, which contradicts (13). Therefore the
number of solutions of (2) in K is m<m,. Thus we have the set of solutions of

(2) in K
{x(l)(t)’ x(2>(t), el x(m)(t)}

and

lim o(x,?, x9) 26, for i#j. (14

t=—

Consider a sequence {t;} such that t,—>—oo, g(t+t,, x)—>g(¢, x) uniformly on
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RXK and G(t+t,, s, x, y—>G(¢, s, x, y) uniformly on RXS*XKXK for any
compact set S* in (—o0, 0] as k—>oo. Since the sequences {x’(t+¢t,)}, 1=j<m,
are uniformly bounded and equicontinuous, there exists a subsequence of {¢,},
which will be denoted by {t,} again, and functions y“’(¢t) such that x“’(¢t+t,)—
¥’(¢) uniformly on any compact interval in R as k—>oo. Clearly y?’(¢) is solu-

tion of (2) in K. Since we have
0., yt(”)I}lig o(xi¥,,, %) for tER,
it follows from (14) that
o', y) =8, for all tER and i#j. (15

Since we have (15), distinct solutions of (2) in K are yV(¢), y?(t), -, y"™(¢).
This shows that system (1) satisfies the p-separation condition in K with the po-

separation constant & .
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