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§0. INTRODUCTION
Let R be an integral domain with quotient field K and let I be an ideal of R.
The concept of integrally closedness was introduced by Zariski- Samuel and
Nagata (cf. [3], [5]). In particular, Zariski and Samuel (cf. [5, Appendix 4])
proved that I is an integrally closed ideal if and only if I is a valuation ideal.
In this paper, we shall try to simplify this result using the theory of Rees
rings. Further, for this application, we shall prove some results concerning the
intersection and the product of ideals.
Throughout this paper all rings will be commutative integral domain with iden-

tities and ideals assumed to be finitely generated.

§1. VALUATION IDEAL AND INTEGRALLY CLOSED IDEAL

At first, we give the definition of valuation ideal.

Definition 1.1. Let O be an ideal of R and let V,, -, V, be some valuation

rings containing R. If there exists a primary ideal @; of V; and
aA=@N-NE.NR,

then we call that the ideal A is a valuation ideal.

Remark 1.2. (1) The quotient field of V; is not necessarily equal to the quo-
tient field of R. But we may assume that the two fields are the same.
Indeed, let K=@ (R) be the quotient field and W,=V,NK, @ .NW,. Then
& NN ,.NR
=@NwpnN-—--N@.NW,)NR
=(@QNViNKN--N@Q.NV.NK)NR
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—Q.N--NQ,NViN-NV,NKNR.
Since ViN---NV,NKNR=R, we have @ NN ,NR=0A.

(2) We may show that
a=av,n--NAav,NR.
Indeed, it is easy to see that
acsav,n---Nnav,Nk.
Since A=/N--NQ,NR, we have A=, thus
AV,N-NAV,NREQ:N--NQ,NR=0.

Next, we define an integrally closed ideal. After we can show that the valua-

tion ideal is equivalent to the integrally closed ideal.

Definition 1.3. For an ideal A of R, we define that
A={aER | n: integer, a, €A}, 1<i<n,
a*+taga”+-+a,=0},

and O is called the integral closure of (L.
If A =0, then O is called the integrally closed ideal.

When R is integrally closed as the ring, the principal ideal aR 1is integrally

closed as the ideal.
Now, we can state and prove some results for preparation.
Lemma 1.4. If two ideals O and L are integrally closed, then ONYL is also.

Proof. By definition, we have A NYX C A . Therefore, it is easy to see that
aNtco. Hence

anrcsans cans =ans.

Thus A NX 1is integrally cloged.

Lemma 1.5. Let A be a ring extension of R. If I is an integrally closed ideal
of A, then A=INR is also in R.



On Valuation Ideals 3

Proof. Let a be an element of 0L, there exists an integer n and € d‘ such

that
a+aga '+ +a,=0.

Therefore o, 'S, ac] =I. Hence a=INR=0.

The following result is well-known (see [5]), but we give a simple proof for

the completeness.

Theorem 1.6. Let O be an ideal of R. Then the followings are equivalent to
each other;
(1) A is a valuation ideal.

(2) A is an integrally closed ideal.

Proof. We assume that O is a valuation ideal. By Remark 1.2, there exist

some valuation rings Vi, -+, V, such that
a=av,n--—-nav,NRk
=(@AV,NR)N---N(AV,NR).

Let V=V, be a valuation ring. By Lemma 1.4, it suffices to show that A VNR

is integrally closed.

Let a be an element of E, there exists an integer n and q,;©0° such that
a*+a, a* '+ +a,=0.

Since R is noetherian, A is finitely generated and V is a valuation ring, so A V=

bV for some bEA. Therefore ¢, A V=0V, thus q;="¥' B, for some B, V. Hence
a+ Bba '+ + B.b"=0.

We have a monic relation of the form:
n n—1
(&) alg) e

Since V is integrally closed, %E V. Therefore

Hence O is integrally closed.

To show the converse implication of Theorem 1.6, we give the following defini-

tion;
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Definition 1.7. Let t be an indeterminant and let Aq=RI[t™ ', Ot] be a Rees
algebra over R. Since Aq is finitely generated over R,Aq is noetherian. Hence

the integral closure Aq is a Krull domain.

For a convenience, let u=t ' and P;, *--, P, be the prime divisors of uZa and

put Vi=(Ag) » . Then V; is a discrete valuation ring.

We shall show that A =u Z—a NEK.

Let a be an element of (. Then we have a monic relation of the form:
a*+a a” '+ +a,=0,

for some a,©d‘. By multiplying t",
(at)*+ait (at)” '+ +a, t"=0.

Since q; ttEAq, atEXa, thus we have a€Su Za NR.

Conversely, let acu Xa MR, then atEXa. Hence there exists a monic relation
(at)"+b,(at)” '+ +b,=0,

where b; are elements of Agq. Since the Rees algebra is a graded ring, we have
only to consider the degree n part. Hence we may assume that b;=at;, (1=i1<n,

aEAY. It holds that
(at)n+a[t(at)n_l+-..+antn=0.

For a,=0, we have a=d.

The ring Aq is a Krull domain, so we have the primary decomposition
u Aa=u Ga)y, NNu Aadr Ay
=uViN-NuV,NAq
Since uXaﬂR=a, we have a=uVlﬂ---ﬂquﬂR.
The integrally closedness of (. implies a=&, that is,  is a valuation ideal.

Remark 1.8. By the above proof, it is seen that the valuation ring may be a

discrete valuation ring. If O is integrally closed, we have

A=av,n-NAV,NR
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Lemma 2.3. Let A be an ideal of R and let? ,--, P, be the prime divisors of
A. The following conditions are equivalent;

(1) AL =d.

(2) L&, for all i.

Proof. Suppose that £, Cp,. Let d=9,MN--MN4d, be an irredundant primary de-
composition of . Then A : L =2d : P, holds. We shall show that A : P, 20.
Since 9,29,MN---Nd,, there exists an element x such that x& 4,MN---MNd,. Hence
x P*Sq, and xP,* 'Z q, for some integer k. Therefore there exists an element
y such that yexp,*' and y&4d,. Then P, y=9,Ng,N---Ng,=A and yEA for
y&4d,. Therefore we have O : p,2A. Hence A : L 20.

Next, we assume that & & P; for all i. Let x be an element of A : L. There

exists some element b,=f not contained in P;. Then xb;&P,, we have xEq;
for all i. Hence x&O. Therefore A : % =0.
Remark 2.4. If A : X , then the prime divisors P,, -, P, of O are also of AL .

Indeed, we may consider the localization of R. Since & ZP,,

%, =R, and (AL), =0, L, =A, =0, .
Hence Assg (R/A)SAssg (R/AL).

Proposition 2.5. Assume that A : L =0 and L : A=% . Moreover if
Assy (R/AL)=Assy (R/A)UAssg (R/L),

then ANYL =AY holds.

Proof. It is easily seen that A NG 2AL . Let Assp (R/A)={P., -, P} and
Assg (R/L)={p"y, - , P’}. By the assumption, Assp (R/AL)={P,, -, P,,

-+, P’.}. Therefore we have a primary decomposition
aL :qlﬂ...ﬂqtﬂq’lm...ﬂq’s,

where d, (resp. d’;) is a primary ideal belonging to P; (resp. ?’;). We shall
show that GLNZ is contained in d; and d’;. The assumption (A implies & & P,
by the Lemma 2.3. Hence

ANL), =0, NL, =, .
Therefore A NI g(amr;),,izapi;qﬂp_
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by Remark 1.2. Since ideals of the valuation ring V are all primary ideals, of
the valuation ring V are all primary ideals, each ideals @; is a primary ideal of

V.. Thus @NR is also in R. Therefore
A=QN-NQNR
=@NR)N---N(Q.NR)

is a primary decomposition of A and @ NR is an integrally closed ideal of R.

Theorem 1.9. An integrally closed ideal has a decomposition consists of integral-

ly closed prilary ideals.

§2. INTERSECTION AND PRODUCT OF IDEALS

The following proposition is well-known.

Proposition 2.1. If two ideals A and L are comaximal, i.e., A+XL =R, then
ants=dx.

The condition A NX =X not necessarily implies that O and X are comaximal,

but holds. When L 1is a principal ideal, we see that;

Proposition 2.2. Let R be an integral domain and & =bR (bER). then follow-

ings are equivalent to each other;
(1) a:b=d.
(2 ants =4adzxr.

Proof. Assume that O : b=0d. It is easily seen that ANL 2AL . Let y
be an element of ANL . As y&X , there exists an element x such that y=bx.
Since y is in A, xbEA. Therefore x&d : b=C0.. Hence bx&dAL ,

Conversely, we assume that ANL =AL . It is easily to see that A : b=20A.
Let x be an element of A : b. Then.

xbEANBR=ANL =AL =bdAl.

Therefore xbEbA, that is, x€A. Hence we have A : b=0d..

We consider the condition of A : &L =A.
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Hence A NX Sq,.

By the same reason, we have A NL &9,

Proposition 2.6. Let A be an integrally closed ideal and let £ be an ideal of R.
If ANy =adxr, then A : L =04.

Proof. 1t is easily seen that Ol : &L 2. Since A is an integrally closed ideal,
A is a valuation ideal by Theorem 1.6. Therefore there exist some discrete valua-
tions vi, v, **, U, and some positive integers e;, e,, ***, e, such that x&€d if
and only if v,(x)=e; for all i.

Let x be an element of A : L. Then xX SANL =AY . For any i,

v.(x L) =v,(0) +v,(L)
=u,(AL)
=u,(A) +v, (L)
=e,+v,(L).

Hence we have v;(x) =e;, that is, x&% . Therefore A : L =.

Now, we obtain the following;

Theorem 2.7. Let Ol and L be the integrally closed ideals such that
Assp(R/AL ) S Assp(R/A) UAssp(R/L).
Then the folowings are equivalent;
(1) dant =4dxr.
2 a:r=4d, s :4d=xr.
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