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An algebra of octonions to be covariant under the Spin(6)-transformation is derived.

It is shown that these octonions can be regarded as a representation of SO(6) spinors.

1. Introduction

The first indication of the significance of octonion algebras to physics is perhaps due
to Pais”. He showed that there are some remarkable similarities between the structure
of interactions of elementary particles and the algebra of octonions. Gunaydin and
Gursey?® studied, using an octonion algebra, the quark structure. On the other hand,
together with the development of the eleven-dimensional supergravity theory, octonion
algebras on S’ were studied in detail by many particle physicists®. All these works are
based on G; or SO(7) symmetry of octonions.

Recent developments of the ten-dimensional physics caused by the superstring
theory give us some important suggestions that the octonion algebra is a mathemati-
cal language to express the nature”. Kugo and Townsend® suggested in the first place
this fact, but they could not completely prove it because of the difficulty due to the
nonassociativity of the octonions. After Kugo and Townsend, several authors studied
the connection between the ten-dimension and the octonions®. Tachibana and Imaeda”
proved completely that components of spinors in the ten-dimensional Minkowski
space-time are represented by the octonions on which the Spin{8)-group acts.

To make the superstring theory realistic, ten-dimensional space-time should be
reduced to an external four-dimensional space-time and an internal compacted
six-dimensional space®. Then an octonionic spinor in the ten-dimensional space-time
should be decomposed into a spinor in the four-dimensional space-time and a spinor in
the six-dimensional space. We deduce that the spinor in the six-dimensional space, one
of the decomposed spinors, is represented by an octonion.

Moreover, this decomposition guarantees a justification of the octonionic representa-
tions of the ten-dimensional spinors.

In this paper, we describe an octonionic representation of the spinors in the
six-dimensional space. Since the six-dimensional space of which we are interested is
Euclidean, the group which acts on the vectors in this space is SO(6). Therefore, we

will describe the representation in terms of octonions of SO(6) spinors.
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2. Preliminaries

We express an octonion by
A=a0+ila1+...+i7a1, (1)

wher ao,a,...,a: are real numbers and 1i,..., ir are the octonion imaginary units which

satisfy the conditions

isic=— 0 ptis € we(a,b,c,...=1,2,..,7),
Eabtz_ sbaC: € peas
€123= € 145= € 176= € 246= € 257= € 347= € 355= 1,

otherwise ¢ ,.=0 2
The octonion conjugation of A is denoted by A, given by
K=ao—i1a1— A 'i1a7 (3)

Then AB=BA holds for two octonions A and B.

The octonion algebra is noncommutative and nonassociative; for three octonions
A,B,C,

AB — BA # 0, @
[A,B,C] := (AB)C—A(BC)#0, (5)

where [A,B,C] is called the associator of octonions A,B,C. We have for the

associator fhe following formulas;

[A,B,C]1=—[B,A,C]=—[A,C,B]=—[A,B,C]1=—[A,B,C], (6)
[A,BA,C1=[A,AB,C]=A[A,B,C]1=[A,B,C]A. ]

From the formulas (6) and (7), we obtain the following important identity (Moffang);
(AB)(CA)=(A(BC)HA=A(BC)A)=:A(BO)A, (8)

for three octonions A,B,C.

We define the scalar product of two octonions A and B as follows;
A-B:=+(AB+BA)=+(AB+BA)=B-A. 9

Then, for three octonions A,B,C, we have the identities
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A-(BC)=B-(AC)=C-(BA). 10
Moreover, we define the norm of an octonion A by N (A);
NA): = A-A=AA=AA=al’+ta’+ - -+a’ a1
Then we can prove, for two octonions A and B,
N(AB)=N(A)N(B). (12

From () and (2, we see that the octonion algebra is one of the divisions algebras.

The formulas above described hold for any octonions. However, we need in this
paper the other algebraic properties of octonions which are not “general (or full)”
octonions but are “restricted” octonions. We describe here some properties for these
octonions.

Proposition 1. For octonions A,B,C, an equation

A(BC)=B(AC) 13
holds, if and only if A consists of the real part and the n (where n= 6 ) imaginary
parts and B consists of only the imaginary parts which do not have the same
imaginary units as A.

Proposition 2. For octonions A,B,C, an equation

ABC)=(AB)C 14

holds, if and only if A and B consist of a real part and an imaginary part and

have the common imaginary units.

These propositions can be proved by using the formulas to the associator.

3. The Six-octonions

Let V; (i,7,...=1,2,....6) be a component of a vector with respect to the orthonormal

basis in the six-dimensional Euclidean space R®. Consider a hypercomplex number
V=iV,, (15)

called as the “six-octonion”, where i, are octonion imaginary units excluding i

Consider for a six-octonion V the following octonionic transformation;
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V- w)V w)) i;, (no sum over i,j) 19
Gi) (i

(.“.') =i; cos( 8 /2)+i; sin( 0 /2). 17
i
The transformation (16 induces for the coefficients with respect to the octonion

imaginary units of V the following changes;

Vi—»V.cos@ —V,; sinf ,
V,—V,sinf +V, cos @,
VimVi  (k#1,)). it

Thus the transformation (6 is equivalent to a rotation of (,7)-plane through an angle 6§

in R®%. Taking another six-octonion U produced by the same procedure as V, we can
easily prove that the scalar product of U and V is invariant under the transformation
(18);

U-V=U,-V,»=inv.. (19)

Note that a six-octonion transformed under the transformation (6 is also a
six-octonion.

Proposition 3. If a siz-octonion V transforms under the transformation (16, then
V is the octonionic representation of a six-dimensional vector on which the SO(6)

group acts.

4. The Spin(6)-octonions
Let us consider a “full”’octonion W which transforms under the transformation (6

as follows:
v —>i,-((w ) T), (no sum over 7). @0

We denote octonions which transform under the same transformation laws as @0 by

0®. Note that the octonionic transformation factors w do not include i;. Hereafter,
(i j)
we regard

i: =i7 (21)

as the imaginary unit of complex numbers, that is, A=a,+ia, for two real numbers

a, and a; i1s a complex nmber.

Proposition 4. O° is a vector space over the complex number field.
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This proposition can be proved by confirming that, using the proposition 1,
A w )dD)) =1i,( (w] )(ACD)) holds for an element © of O® and a complex number,
A, and using the proposition 2, any elements of O® satisfy the axioms of complex
vectors, that is, for three elements ®, ¥ andQ of 0® and two complex numbers A
and B,

(AB) ®=A (B®D),

10=0,

00=0,

(-1) o=—-0,
(A+B) ©=AD+BOD,
O+V="+0,

O+ (¥+Q) = (¢+V¥) +Q,
A (O+T) =AD+AV

@2
We define for two elements @ and W of 0® the following quantity;

{D, ¥} (=D -V+i (D - (¥) @

Proposition 5. The quantity {®, W} is an invariant complex number under the
transformation Q).

This proposition can be proved by using the formula (10), the proposition 1 and the
fact N( (\iavj))zl.

We write an element @ =i, ¢ .(A=0,1,..7,i,=1) of 0%

®=(Du+®zi2+¢3i3+q)sis, (24)
where

(Do=¢o+i¢ 1, =0 ,+i¢d 5,

(D3:¢3+i¢4, ¢6=¢6+i¢1- (25)

Then, from the proposition 2, we can show that

ACD=A(D0+ (A(Dz) i2+ (Aq)a) i3+ (A(Ds) is (26)

holds for a complex number A. Moreover, taking another element W of 0®, and

expressing it by the same form as (24), we have
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{(D, W} =(D0Wo+(DzT2+®3T3+CD6T5
= {V, O} . @n

The quantity (27) coincides with the inner product of two vectors in the four

dimensional complex unitary space. From (26) and (27), we can prove that

Ao, v} = {®, AV} =4 {©, ¥} @8

holds for two elements ® and ¥ of O® and a complex number A. In addition,we can

prove also that

{0, (v+Q)} = {®, ¥} + {©, Q}, @9

hold for three elements ®, ¥ and Q of 0® Thus, we-can identify the invariant
complex number (23) of two elements of O® with the inner product of two vectors on
which the SU(4) group acts. Note that the isomorphism SU(4)=Spin(6) holds®.

Proposition 6. 0® is an octonionic representation of the vector space on which the

Spin(6) group acts.

We call O® as Spin(6)-octonions. Since the group Spin(6)=SU(4) acts on spinors in
R we can consider the Spin(6)-octonions as a representation in terms of octonions of
the SO(6) spinors.

For two Spin(6)-octonions ® and W, we consider an octonion product ®W¥. We can
show easily that this product octonion has the same transformation law as V of (16).
However, since ®T is in general a full octonion, we can decompose it into a sum of
a six-octonion with the same form as (15) and the invariant complex number (23).

Thus, we can find that for two Spin(6)-octonions @ and W , the quantity

is the component of a vector in R%

Proposition 7. A component V; of any vector in R® can be expressed by
Vi=0-Gi; V), @D
for two elements © and ¥ of 0°.

The proof of this proposition can be accomplished by putting ¥=—V®/N (D)
and substituting this into the right hand side of (31), where V=iV, Note that the
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decomposition (31), for a given V,, is not unique, since for any @(or W) there exists
an V¥ (or @) satisfying(31).

5. Polarization of Spin(6)-octonions
Let us consider a gauge freedom of Spin(6)-octonions. Since, from the proposition
3, Spin(6)-octonions can be regarded as complex vectors, we can consider that these

vectors transform under the U(l)-gauge transformation.

Proposition 8-a. The Spin(6)-invariant complex number {® , W} for two

elements ® and UV of 0° is invariant under the U(l)-gauge transformation
O—exp(iAN) D, T—exp(A)V, 32
where A is a real number, and i=1i,

However, we observe that the vector @ -(i; ) changes under the transfor-
mation(32). This shows either that a vector in R® cannot be constructed by any two
Spin(6)-octonions or that the Spin(6)-octonions cannot have the U(l)-gauge freedoms.

To avoid this difficulty, we have to consider an inequivalent gauge transformation
to (32) for elements of O®.

Proposition 9. If two elements ® and X of O® transform under the transfor-

mations
O —exp(iN) D, X—Xexp(iA), &8)

respectively, where A is a real number, then the vector ® - (i,X) 1is invariant under

these transformations.

We can consider also this transformation for X as a U(l)-gauge transformation for

an element of 0®.

Proposition 8-b. The Spin(6)-invariant complex number {X , Q} for two

elements X and Q of O is tnvariant under the U(1)-gauge transformation
X—>Xexp(iA), Q—>Qexp(iA), 34
where A\ is a real number.

Therefore, the Spin(6)-octonions are polarized by their U(1)-gauge freedoms, one of

the polarizations denoted by O®, has the gauge freedoms of the type of (32), and the
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other of the polarizations denoted by 0, has the gauge freedom of the type of (34),
that is,

Spin(6): ® — i w)@), (no sum over 1), (35—a)
(i j
UQl): @ — exp(iA @), (35—D)
for an element @© of O®, and

Spin(6): X — (X(w )i, (no sum over i), (36—a)

ij)
U(l): X = Xexp(iA), (36—b)

for an element X of Q9.

6.Spin(6)-octonions on Six-dimensional Riemannian Manifold
Let us consider the six-dimensional Riemannian manifold K°® We denote an

orthonormal basis at a point P on K® by e;
gle;, ej)= 0 ifs (37)

where g is a metric tensor at P. Then we can define the Spin(6)-octonions at P, that
is, under the following rotation of any (7,7)-plane through an angle & in the tangent

space at P;
e—cos 8 ,-e;+sin 0 ,-¢;,
e,—~—sin 0 ,-e;+cos 8 ,-¢,
€6, (kil,]) G&
an element ¥ of 09,(0% or 0%,) at P transforms as
¥ - il (w)(P)\If), (no sum over i), 89
(w‘)(P)=i;COS(0p‘/2) +i;sin(6,/2) 1)

Let us consider the covariant derivative of Spin(6)-octonions. We define the

covariant differentiation with respect to the basis ¢; at P by V.. We require that
v .O= vy .0, for an element ® of O ®, @)

are not only elements of O® but also the components of a vector with respect to the
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basis e; at P. Suppose that the proposition 5 and the proposition 6 hold at any point

on K® Then we have, for an element ® of O®,
V.-@:efq)‘*‘ —i’ Cl)ijk(ij(ikcp), @Z)
where w;; are the Ricci rotation coefficients'®, which are defined by
Vi€i= @ 58— W s @3
and satisfy the torsion-free conditions
e,-e,-—e,e,—=( [OF e wjib)eb- QQ
If we consider the polarization of the Spin(6)-octonions, then we have to extend the
covariant derivative (42) to be covariant under the local U(l)-transformation. Suppose
that the propositions 8-a and 8-b and the proposition 9 hold at any point on K®% Then
we have, instead of the covariant derivative V;,
D:i®:=(V+iA)D, for an element ® of O ® , @5

D;X:=(V,—iA)X, for an element X of O ¢® , @6

where A;is a gauge field which transforms under the localized transformation of (33)

as follows;

A—A—eA ’ @7)

and where A is a function of the coordinates on K°®
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Appendix A : The Octonion Structure Constants

We define the octonion structure constants fasc (A,B,C,...=0,1,...,7) as follows;
isic:=1iaf asc, (Al-a)
where iy=1 and i,, ...,i;are the octonion imaginary units. Then, using (2), the octonion

structure constants fasc can be explicitly written as follows;

faoe=0 4, (A2-a)
face=040co— 0 0404t 0 4.0 cc € e
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=—foa (a,b,c,..=1,2,...7). (A2-b)

The octonion constants fasc defined by the equations (Al-a) can be also expressed
as fABC = i,q'(iBic). Since. from the identities (10), iA’(iBic)=iB'(iA ;c)=ic‘(igi,1) hold for

any octonion units ig,lsic, then we have’

ialc=1iaf asc, (Al-b)

iBiA=icfABC~ (AI-C)

Theorem. The octonion structure constants fapc satisfy the conditions
Sasefrope= famef e
= fusfioep= fasafean
= frusfacp= framf ean
= 0 4c 0 g, (A3)

where the symbol (A | ... | B) indicates the symmtrization of the indices A and B, i.e.
T(A [Y: Q /2) (TAA..B+TB..,A)-

Proof. Consider (PQ):-(PR) for three octonions P,Q,R. Putting P=isps, Q=14g94
and R=iar4, and using (Al-a),(PQ)-(PR) can be written as follows;

(PQ)-(PR)=frapfecoabcqero=fra sfc| coPabcqsro.
On the other hand, using(10),we have

(PQ)-(PR)=R-(P(PQ))=N(P)(Q*R)= 0 sc 0 sopapcqsr».

Since these equations hold for any pa,qa,r4, thys we have

fE(AleEIC)D: 0 AC 0 BD-

If we consider (QP)-(RP), (PQ)-(PR), (QP)-(RP), (PQ)-(PR) or (QP)-(RP) instead
of (PQ)-(PR), we can prove, using (Al-b,c) instead of (Al-a), the remaining

equations.[ ]

Appendix B: A Correspondence between the Spin(6)-octonions and the
Spin(6)-Clifford Algebra

In this appendix, we give a connection between the Spin(6)-octonions and the
standard Clifford algebra of the Spin(6) group. For an element ® of O® and a
six-octonion V constructed by a vector on which the SO(6) group acts, we observe

that a product octonion V@ is an element of O(6). If then we express V by i
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V:(@,j,..=12,..6) as (15) and ® by i.D.(a, B,..=0,2,3,6) as (24), the product octonion

may be written as follows;

V®=V,»5¢, (Fiaﬁ) iﬁ, (Bl)
Where

Ciao - =f0ia+if7iay

| PP :fzia+if5ia,

Tiaa - :faia+if4ia,

Fiaﬁ : :fﬁia+if1in, (Bz)

i=i; and fasc are octonion structure constants.

Proposition 10. We put I i.sdefined by (B2) as the (a , ) -component of a 4X4

complex matrix ["; , i.e.
(T'D e - =Tias. (B3)
Then the four ©I'; matrices satisfy the Clif ford equatrions
3 (DD +L00) =064, (B4)

where the symbol + indicates the hermite conjugation of a matrix and I is the

4 X4 unit matrix.

Proof. Consider an invariant quantity {V®, VW} for two spin(6)-octonions ®, ¥
and a six-octonton V. From(24),(B1) and (B3), we have

{(Vo, vV} =(Vo). (V).
:V,'qu)a (F (iFj) +)aﬂ‘1fﬂx

where the symbol (...) in the indices indicates the symmetrization. On the other hand,
from (23), (B1) and (B2), we have

{(VO, VI} =(VO) - (V¥) +i((VD) - G ((VI)))
=N (V) (V- O+i(¥ - (D))
=N (V) {v, o}
=VV,8,0.V,.

Since these two equations fold for any ®.,W¥, and V., we obtain the equation(B4).[]
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The Clhifford equations (B4) are obviously of the Spin(6) group, namely, I"; are the
gamma matrices in the six-dimensional Euclidean space. Thus, we can show the
corrective correspondence between the Spin(6)-octonions and the Spin(6)-Clifford

algebra.

References

1) A. Pais, Phys. Rev. Lett.7,291(1961).

2) M. Gunaydin and F. Gursey, J.Math.Phys.14,1651(1973);

M. Gunaydin and F.Gursey, Phys.Rev.D 9, 3387(1974), F.Gursey, in Internatinal Symposium
on Mathematical Problems in Theoretical Physics, ed. H.Araki, (Springer-Verlag, Berlin,
1975); F.Gursey, in Group Theoretical Methods in Physics, eds. W.Beiglbock, A.Bohm and
E.Takasugi, (Springer-Verlag, Berlin,1979).

3) T.Dereli M.Panahimoghaddan, A.Sudbery and R.W.Tucker, Phys.Lett.126B,33(1983);
F.Englert, M.Roomam and P.Spindel, Phys.Lett.127B,47(1983); J.Lukierski and P.Minnaert,
Phys.Lett.129B,392(1983); L.Castellani and N.P.Warner,Phys.Lett.130B,47(1983); F.Englert,
M.Rooman and P.Spindel, Phys.Lett.130B,50(1983); M.Rooman, Nucl.Phys.B236,501(1984);
M.Gunaydin and N.P.Warner, Nucl.Phys.B248,685(1984); Z.Hasiewicz and J.Lukierski,
Phys.Lett.145B,65(1984).

4) M.B.Green, J.H.Schwarz and E.Witten, Superstring Theory, vol.l, (Cambridge Univ.Press,
Cambridge,1987).

5) T.Kugo and P.Townsend, Nucl.Phys.B221,357(1983).

6) A.].Davies and G.C.Joshi, J.Math.Phys.27,3036(1986); K.W.Chung and A.Sudbery, Phys.Lett.
198B,161(1987); J.M.Evans, Nucl.Phys.B298,92(1988); K.Imaeda, S.Ohta and H.Tachibana, Bull.
Okayama Univ. Science 24A,173(1989); H.Tachibana, Bull. Okayama Univ. Science 24A,
181(19889).

7) H.Tachibana and K.Imeada, Nuovo Cimento 104B, 91 (1989).

8) M.B.Green, J.H.Schwarz and E.Witten, Superstring Theory,vol.2, (Cambridge Univ.Press,
Cambridge,1987).

9) E.Cartan, The Theory of Spinors, (Hermann,Paris,1966); J.F.Cornwell, Group Theory in
Physics,vol.2, (Academic Press, London,1984).

10) L.D.Landau and E.M.Lifshitz, The Classical Theory of Field, (Pergamon Press, Oxford,1975);
S.Chandrasekhar, The Mathematical Theory of Black Holes, (Oxford Univ. Press, New
york,1983).



