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Abstract

Responding to an external periodic force,the oscillation mode of the Oregonator
shows a hysteresis phenomenon and a relaxation phenomenon according as the final
value of the amplitude of the external periodic force is inside or outside of the bistable
region. When the amplitude is changed with time while the frequency is kept a
constant. In the outside of the bistable region near the transition points, we observed
relaxation phenomena and obtained the critical exponent in the relation between the
relaxation time and the difference of the control parameter from that of the critical

point.

§1.Introduction

Hudson et al”. and Vidal et al®. observed bifurcations and chaos phenomena in the
temporal oscillation modes of the Br ion concentration in a continuous flow stirred
tank reactor (CSTR) experiment of Belousov—Zhabotinskii (BZ) reaction®. They
observed a series of 7w (m) modes consisting of m —peak periodic oscillations (m—P.O.,
m=1,2,3,--+) and that of double periodic oscillation modes = ,,(m,m+1) consisting of
p times of m—P.O. and ¢ times of m+1—P.O.. The multiplicity of the periodic
oscillation depends on the flow rate of the solution into the reaction vessel ie. the
multiplicity increases with the flow rate. A double periodic mode = ,(m,m+1) appears
in a region between the two adjacent periodic modes = (m) and = (m+1).

In previous papers'®, we have reported the response of the Oregonator to an
external periodic force Acosw 7 applied to the third component shows a single
periodic mode = (m) and a double periodic mode = ,.(m,m+1). Although there is no
direct connection between the BZ reaction (CSTR) mechanism and the Oregonator
response to the external periodic force, the similarity between the results of Hudson et
al. and Vidal et al. and those of the forced Oregonator in the appearance of the
oscillation mode 7 (m) is conspicuous.

On the other hand, in our study® of the shift type piecewise continuous maps which
approximate the attractor obtained by the forced Oregonator, we found that the
piecewise continuous maps realize 7 (m) and 7 ,,(m, m + 1) modes. The order of

appearance of these = (m) and w,,(m,m+1) does not depend essentially on the
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mapping function and is quite similar to the cases of the CSTR experiments and of
the forced Oregonator. Since the three different systems:the CSTR experiments, the
forced Oregonator and the piecewise continuous maps which exhibit the same order of
appearance of = (m) and = ,.(m,m+1), we speculate that the characteristic feature of
certain nonlinear systems under an influence of an external periodic force may be the
same.

In a previous paper”, we have observed hysteresis and relaxation phenomena in the
states of the periodic oscillation modes of the forced Oregonator when the amplitude
of the external periodic force is varied with time while the frequency is kept
constant. A transition point of an oscillation mode differs according to whether the
amplitude is increasing or is decreasing with time. Outside the bistable region and in a
vicinity of the transition points, we have observed the relaxation phenomena which
reveal a relation between the amplitude and the relaxation time. The relation can be
expressed by a power law. We have obtained the critical exponents from the rlation
similar to that between the specific heat and the temperature in the critical
phenomena of a matter at a transition point.

In this paper, we extended the study of the relaxation phenomena for different
value of @ of the external periodic force. We report the relation between the value of
critical exponent and the frequency of the external periodic force and determine the

value of the critical exponent as a function of w.

§2.Fundamental Equations and Computer Calculations

The Oregonator which simulates the BZ reaction under the influence of an external

periodic force is expressed by a set of nonlinear differential equations as follows®™®,

:—5——5+7)—q6—$7z
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where £, 7, p are the concentrations of HBrO, Br~, Ce*" components in the BZ
solution, respectively, p, q, h, € are parameters and are taken as fixed constants, 2.0,
0.006, 0.75, 0.03, respectively, and Acosw 7 is the external periodic force. We use the
same notation convention as that used by Tyson®. In the simulation calculation we
take the amplitude A as a control parameter varying with time for different value of
the angular frequency w which is being fixed during the variation of the amplitude.
We change the amplitude A after a transient oscillation which depends on initial

condition has died out.



Hysteresis and Relaxation Phenomena of the Forced Oregonator 97

§3.Results on Hysteresis and Relaxation Phenomena

In a calculation the frequency w of the external periodic force is kept at a
constant, ® =3.14159. Then the amplitude A is kept constant A=40 for z <100 and
after a transient oscillation has died out, we decrease the amplitude A linearly in time
from 40 to 20, namely, A=40—0.2 (7 —100) for an interval of time 100= r =<200. The
oscillation mode of the system changes from = (2) to = (3) at A=31.6 and the time
variation of the oscillation of the % is shown in Fig.l. On the contrary, when we
increase A from 20 to 40, = (3) changes to = (2) at a transition point A=32.7. The
transition points differ whether A is decreasing or increasing. This difference of the
value of the transition point A is shown in Fig.2, where the solid lines (or the dotted

lines) represent the minimum values of » when A is decreased (or increased) in time
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Fig.l. The change of the oscillation mode of the Oregonator in the component 7

from 7 (2) to = (3). For 7 <100, the amplitude of the external periodic
force Acosw 7 is 40. After a transient oscillation depending on the initial
condition has died out, the amplitude A is decreased as A=40—0.2 (7 —
100) for 100= t =200 while the frequency w being fixed at 3.14159.

while @ is being fixed at 3.14159.The rate of change of A with time dA,~dr is taken
as 0.04. In the region(1) A>32.7, the oscillation mode is 7 (2) and in the region (I 1)
A<31.86, it 1s 7 (3). In the two regions (I) and (I 1), the modes are independent of
whether A is increased or decreased (the values of 7 show a small difference in the
lowest branch of the mode). But in the region (I I 1)31.6<A<32.7 (we call the region
a bistable region) when A is increasing,the mode is = (3) while the mode is = (2)
when A is decreasing. Therefore, in the region (I I 1) for the same value of A, the

mode is different depending on whether A is increasing or decreasing. On the other
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Fig.2. The trajectories of the minimum points of the temporal oscillation of the
n —component when the amplitude of the external periodic force is
increased from A=20 to 40 linearly in time (indicated by the dotted
lines) and then decreased to A=20 (indicated by the solid lines) while the
frequency is being fixed at 3.14159. The rate of change of A with time,
dA_~dz is 0.04. In the region (1 I 1) 32.7>A>>31.6, the trajectories show

a typical hysteresis phenomenon.

hand, when the value of A is changed from that less than 31.6 to a value A; which is
larger than 32.7, the mode changes from 7 (3) to = (2), but it takes a time to jump to
the final state = (2). The = (3) mode is a metastable state and the relaxation time
depends on the difference A;,—32.7=AA. We observed that as AA—0, the relaxation
time tends to infinity. Thus, we have confirmed a hysteresis phenomenon and a

relaxation phenomenon in the response of the forced Oregonator.



Hysteresis and Relaxation Phenomena of the Forced Oregonator 99

w
40
a
S ™
=
T
L 30- ;
< 100 1100
i 1075+ TIME
RELAXATION TIME
n
10—6_
u
|’
/
\_/\\_/\
1077 ,
100 1100
TIME

Fig.3. i) Figure shows the time change of A. For v <100 the value of A
is 40 and for 7 =100, A is decreased as A=40—0.04 (= —100). When the
value of A becomes 31, the value of A is maintained at 31 for a time
100. Then the value of A is decreased to A;=30.335 and then maintained
for the rest of time while ® is fixed at 3.1.

i) The mode is 7 (2) for A=31.0 and then the value of A is
changed to 30.335. The mode still remains in 7 (2) for a time 120
(relaxation time) After a relaxation time of 120 the mode suddenly

changes to = (3).

Figure 3 shows the relaxation time in the time oscillation of the % component
when @ is fixed at 3.1. The value of A is decreased from 40 to 31 linearly (where A
=31 is the bistable state) and then it is maintained at 31 for a while. The mode stays
in 7(2). Then the value of A is changed to A;=30.335 and this value is maintained
after that. The mode remains in 7 (2). After a time of 120, the mode changes
suddenly to = (3).

The relaxation time becomes longer as the final value A; gets nearer to the

transition point A., where the value of A. is found to be 30.3399. The relaxation
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between the value of A.—A; and the relaxation time T is shown in Fig.4. The value
of A is decreased linearly from 40 to 31, and is maintained at 31 for a time of 100.
Then the value is jumped to A; while w is fixed at 3.1.For A;=30.3399, the relaxation
time becomes infinity. We consider that the value of 30.3399 is the transition point
from 7 (2) to 7 (3). The relation between the value of A.—A, and the relaxation time

T fits the familiar equation

T=B (A.—A,) (2)
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Fig.4. The relationship between A.—A; and the relaxation time 7. The value
of A is decreasd as in the case of Fig9 1i). w is fixed at 3.1. The
relationship between A.—A; and the relaxation time T obtained is given
by the expression T=B(A.—A,)"*, where we find B=7.92, the transition
point is A.=30.3399, and the critical exponent is A =0.5173+0.0097.
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Fig.5. The critical exponent A for various values of the frequency w.

The horizontal line is the average value of A =0.5384.
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Figure 5 shows the critical exponents A for the different values of w =3.08~3.22.
The Fig.5 shows that the value of A does not been to depend on ® sensibly. The
average value of the critical exponent is 0.5384. In Fig.5, nine critical exponents agree
within errors and is approximately equal to 0.54. The values of all critical exponents
obtained are between 0.51 and 0.57. Therefore, we think that the critical exponent

does not depend sensitively on the value of @ and is a constant at about 0.54.

§4.Discussion and Conclusions

We have some reports on the relaxation phenomena in the response of nonlinear
systems. Y. Morimoto® observed the relaxation phenomena near the critical point in a
forced Van der Pol oscillator equation. He obtaind that the relation between the
relaxation time and the distance of the amplitude A, from the critical point A, can be
expressed by the same power law given by eq. (2).

For a two dimensional map, C. Grebogi et al.!® studied chaotic transients. In the
chaotic transient, the average lifetime depends upon the system parameter p namely,
as T~ | p—p.| 7, where p. and 7 are the values of p at the crisis and the critical
exponent, respectively. The relation between the average lifetime and the system
parameter is the same form as eq (2). But whether the mechanism which gives rise to
the transient phenomena for the chaotic transient phenomena and for our case of the
relaxation phenomena are the same or not is not yet clear to us.

In this study we report the critical exponent when the mode transits from = (2) to
7 (3). It is interesting to study the critical phenomena as the mode transits from 7 (3)
tom (2), i. e., the value of A is increased to the bistable region and then changed to a
value near the transition point so that the mode changes from 7 (3) to= (2) (but out
side of bistable region).

In the critical phenomena, even though the hysteresis and relaxation phenomena are
caused by different mechanisms, it often happens that the critical exponents obtained
for these phenomena by the power law given by eq (2) are the same. The reason for
this is similar in the case of phase transition in the property of matter. However we
do not know whether the critical exponent can appear in different kinds of transitions

in the systems expressed by a set of nonlinear differential equations or not.
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