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Summary : The quantum theory of gravitation was developed on the basis of the
background field formulation originally developed by Feynman to quantize a
perturbation field of the «classical gravitational field. The theory is, therefore,
intrinsically semiclassical picture of the graviation.

In this paper, we present a connection between the two important formulations of
the quantum theory of gravity : the original formulation of DeWitt’s background field
method and the path integral method developed by Hawking.

I. Introduction.

Recently, the background field theory has called attention of physicists as a new
method of quantization of not only Yang-Mills fields but also a gravitational field.

The fundamental idea of this background field theory was first put forward by
Feynman® and was formulated by DeWitt?. Since then, many authors discussed from
various view points®. In the case of Yang-Mills fields, the gauge invariance has to be
implemented into the formulation as a fundamental requisit. In the case of gravitation,
as for the background field, we know that the correct classical gravitation is that of
Einstein. The general theory of relativity is constructed on the basic principle that the
theory should be invariant under general coordinate transformations. It is important,
therefore, that in the case of quantization of the gravitational field, the whole process
of the quantization of the gravitational field should be performed in a manifestly
invariant way under general coordinate transfrmations as in the case the quantization
of Yang-Mills field is carried out by the gauge invariant way. The background field
theory utilized this idea in a maximum extent.

Recently, an attempt is made that the theory is to satisfy the BRS symmetry®. The
formulation of the background field theory differs from that of the usual quantum field
theory.

The theory is constructed using the S matrix. Consider a classical field ¢ is
perturbed infinitesimally ¢ =¢ ,+ ¢ . The perturbed field ¢ is considered as a

quantum fluctuation and the field ¢  is quantized while the unperturbed field ¢, :
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the "background field is considered as a classical field. The perturbed field is expanded
around the background field ¢, and obtain the S matrix. Thus, this quantum
mechanical formulation of the gravitational field is, inevitably a semiclassical picture.
The reason for this is that a complete quantization of a classical gravitational field is,
at present, extremely difficult, as many authors pointed out. It seems that the path
integral method is the best for the quantization of a gravitational field. The path
integral method of the quantization of the gravitational field were introduced by S. W.
Hawking and G. W. Gibbons®, but a rigorous proof of the validity of the path
intergral method has not been obtained.

In this paper, an attempt is made to transfer from the original DeWitt formulation
of quantization of a gravitational field by the background field method to the path
integral method of Hawking.

In Section 2, the original DeWitt formulation is introduced and in Section 3, a

method to transfer to the path integral method of Hawking is described.

2. Original Formulation of DeWitt.
In this Section we introduce the original formulation of the S matrix theory. The

vacuum-to-vacuum transition matrix elements have the following form:

<O,oolo,-00>=eir (1)
In the above eq. (1) , the righr-hand side is the functional integral defined by

i
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where S is the classical action. The notation of DeWitt is used hereafter :

For & -function :

5, =0,6(xx),
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The functional derivatives S,; , S,; are those of differentiation by the background
field operators 0 '. Eq. (2) is equivalent to the action in which the field operators are

replaced by
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where the 0 ' are the classical background field, and the &' are the perturbation
field.

Since the equation (2) does not take into account the ultraviolet divergence, the
expression differs slightly in form from that given by G. t'Hooft®.

In eq. (2), the first functional derivatives do not appear because the background field
satisfies the classical field equations : S,, = 0.

The diagrams constructed using (2), are the loop expansion in case where there does
not exist an infinite dimensional invariance group to the background field.

The states of the system are represented on the mass shell states. The expansion in
(2) is equivalent to that by the Planck’s constant h ©.

In case where there is an infinite dimensional invariance group, the diagrams are
replaced by the two loops, the one expresses the propagator of the physical quantity
on mass shell and the other does that of fictitious quantum. As for example, in the
case of a grtavitational field, the quantum is spin one and the physical quantity

describing the propagation is expressed by the following form :

—aB 2

. ;2] @
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where G°# are the propagator for the operator F; of the virtual particle and G,** are
the propagator obtained by the calculation when there exists no perturbation field and
G and G~ ** are the retarded Green functions of F; and F.;, respectively.

The G*°? are, in general, the Green function of the following operators :

F,,=R,7,R, (5)

a ij

where R', are the functions which appear in the infinitesimal group transformations

of the field quantities ¢ ' :
dp'=R,o¢&° ©)

where £ * are the group parameters. 7 ;; in eq. (5) are the elements of the symmetric
continuous matrices. A concrete form of the infinitesimal disturbance can be
determined by an auxiliary condition. Furthermore, the R’ satisfy the following
identities :

Rxa’jRJﬂ_Rlﬂ.lealerC;ﬁ (7

where C7,.; are the structure constants.
In the case of a gravitational field and a Yang-Mills field, S,; in eq. (2) are singular.

In the field theory, however, those quantities are requested to be non-singular. To
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meet the requirement, S,; are replaced by F; defined by

B

F;;=S +rile;ra R]ﬁrlj ®)

’ij
where 7 “? are nonsingular symmetric matrices and obey the following group
transformation law : '

af

ap i a J B B a
srf=r""RloeT=(cl,r +cl,r*"ee’ )
Let the action for Einstein theory be taken as
1 1
S,=— ngRdx-*/\ ngdx 10

where R and A are Riemann scalar and cosmological constant, respectively, and we
take the units :1 6 tG=C=1.
Using eq. (10, the S,; in eq. (2) are calculated to be as follows® :

5283/6gpu5ga‘ r':
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where the subscript dotts in the 0 function denote the covariant derivatives.

Further, choosing the following supplementary conditions :

5g”u=:§Ruva,5€”'df 12
Ry =—0,,..,—0,,. ., 13
0,, =¢,,0(x,x")

and let the matrices be defined as

pve' t’
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7 =gl 58 04 ) 14
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I

the F#*° * corresponding to the F; are expressed as®

uvae' v’ v A rA vp pv vaA

11
F =§g2(g”g +g g —g g )
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XCO0 ,ayy —2R, ;0 ) (19
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F*“*° * given by (15) are non-singular self-adjoint operators and the Green functions

can be defined.

3. The relation of the path integral formulation by Hawking to the original
DeWitt formulation.
To consider a quantization of gravitation, Hawking proposed the following path

integral form for the amplitude :
z={Dl&ID[ ¢ Jexp{i1[g, ¢ 1) 19

where D[g] is a measure on the space of all metrices, D [ ¢ ] is a measure on the
space of all matter fields, I is the action and the integral is taken over all field
configurations with a given initial and final values of ¢ and g.

The integral Z is the amplitude <g; #:S; | g, ¢1,.S,> to go from a state | lg, ¢ .,
S, > with metric g, matter field ¢, on the S, surface at t, to a state | lg,, ¢,, S: >

with metric g,, matter field ¢, on the S, surface at time t; :
<g;. 9, S,lg.8,S>=7% an

If the amplitude (17) can be determined by specifying the background fields g, ¢ .,

Siand g, ¢,, S, then ¢ ' in eq. (3) are regarded as field quanta.

In the case of a gravitational field, eq. (3) has to be replaced by

g,,=g,,+2,, 9

R

whereg ,. are the field arising from the quanum fluctuation of the classical
background field ¢ °,,.
The classical background field bounded by the two space-like surfaces is

essentially “compact”. The background field plays a part of the source of the perturbed
field. In case where there is an infinite dimensional invariant group, the order of the
operators in a product of operators cannot, in general, be determined uniquely so that
it is difficult to introduce a source term in the theory. Thus, to obtain an interaction
into the theory, we have to use the perturbation expansion based on the relation given
by eq. (18).

Let A=10 in eq. (0, the action integral is given as

1
S =— ngRdx 19

B

The Ricci scalar R contains terms of the second derivatives of the metrices.
In order to obtain an action which depends only on first derivatives, as is required
by the path integral method, one has to remove the second derivatives by integration

by parts. We obtain for the acation I, instead of eq. (19), as follows :

1 1
I=— S Rg2d4x+ g B(—h )stx co
Y oY
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where Y is a region bounded by the space-like surfaces S, and S; and 6 Y is the
boundary of the region Y as in the case of S, and S, described in eq. (17) .

The region Y is a compact region and in this region, the background field is
asymptotically flat.

The surface term B is so chosen as to that the metric g satisfies Einstein field
equation and h is the induced metric on the boundary.

The action I is, for the variation of the metric g (such as due to a gauge
transformation), zero on the boundary surface ¢ Y.

The surface term B, in general, ignoring the coefficient term, has to be of the
following form :

B=K+C @y

where K is trace of the second fundamental form of the boundary of the metric g
depends on the induced metric h and C is a term which depends only on the
boundary and not on a particular metric g.

Using S, given by eq. (19), S,; of (11) is given as

628/5guy 58',1, T’

1l po vaA sA v pyv pA
{ -4—g2(g g +g g —g g )X
= Ik (o' ') (o> ') (o' 77 )
Le (om0 a0 ann )] @

The second fundamental derivatives derived from the action given by eq.(20) do not
in general, agree with those given by eq. (22).
It is, however, a difficult problem, even when the absence of the matter field ¢ !,

whether non-singular self-adjoint operators F *“° * which correspond to those of
eq. (15) can be derived from eq. (20) under certain supplementary conditions as those
of eq.(12) and eq. (13). The second term on the right hand side of eq. (20) is of the
same form as that given by eq. (21) in a finite region of the background field. In this
case, F; given by eq. (8) have Green functions.

The K given in eq. (21) is, in general, the second fundamental form so that Gauss’
theorem holds on any chosen closed surface. In general, an arbitrary differential
operator F; should have Cauchy data, and the Gauss’ theorem should hold on such a
closed surface. The second term on the right hand side of eq. (20), is invariant under
a general coordinate transformation of the boundary 0 Y of a finite region of the
background field.

In order that the theory constructed on the basis of the path integral defined by eq.
(16) should be "manifestly covariant”, the asymptotic conditions® for the background
field should not change their forms under general _coordinate transformations because
the background fields introduced in Sections (2) and (3) should essentially be the same
field.
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4. Conlusion.

In the above derivations of the path integral methed and the original DeWirtt
formulation, the procedures are not rigorous from the mathematical view point.

There arises an intrinsic difficulty to define a Feynman path integral in the
definition of the path integral in the functional space of the metrices in a flat
Minkowski space. The difficulty is more profound in the case of a gravitational field.
[ The region Y on the background field introduced in Section 3 is asymptotically flat.
But if it were not asymptotically flat, the time slice of the space-time of the path of
the background field cannot be made uniform. The infinitesimal perturbation can be
given only in such a spacetime in which a uniform slice is to be made possible. ]

If the argument developed in Section 3 should hold rigorously, then apart from
the “manifestly covariance” of the theory, the g field defined in eq. (18) can be
considered to be a "quantized field”.

The difficulty to introduce in Lagrangian formalism the source terms of the
gravitational field, the expression to describe the interactions of the gravitational fields
corresponding to those of eq. (2) can be obtained by the substitution of the g,. given
by eq. (18) into those of eq. (16).

A further study is going on at the moment and the full result will be given in
future.
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