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Important role played by anharmonic lattice vibration in superionic conductors is
pointed out. As an example,anisotropic and large anharmonic vibration of Cu ion in«
-Cul crystal is discussed. A mechanism of the sublattice melting is proposed in which

cooperative interaction between Cu and I ions leads to an instability in Cu sublattice.

§1 Introduction

Superionic conductors are special ionic systems: Group of ions of one kind constitute
a rigid regular lattice, through which another group of ions perform fast diffusion,
giving rise to a high ionic conductivity. This means that at least one part of crytal,
namely the crystalline order of one sublattice, is destroyed in conducting phase ( sub-
lattice melting ), and therefore it is expected that before the system undergoes a
transition to superionic conducting phase, a remarkable increase in the amplitude of
the anharmonic vibration should be realized as a precursor phenomenon, because the
concerned sublattice is fated to melt and ions in it would execute violent anharmonic
motions to assist break down of the sublattice. There is a few experimental evidence
for that this is indeed the éase.

As to the origin of the large anharmonicity, a conspicuous fact should be noticed: In
most 3—d superionic conductors, the mobile ion often occupies a non-centro symmetric
position in the crystal lattice. For instance Cu* ion in Cul and CuCl is located at a
center of tetrahedron formed by four neighbouring anions as depicted in Fig. 1, and
similarly Ag* ion in a-Agl at one of centers of distorted tetrahedra as shown in Fig.
2. The characteristic feature of such low symmetry sites lies in that the anharmonic
part in the effective local potential for the occupying ions starts with the third order
term instead of usual fourth order term as in cubic system. To be more specific, the
potential energy of a Cu™ ion as a function of displacements from the center in Fig. 1

reads as
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Fig. 1 Non-centro-symmetric position occupied by a Cu* ion in a-Cul crystal.

Fig. 2 The sites occupied by Ag* ion ina-Agl crystal.
V=V’O+%a(x2+y2+zz)+b xyz+%c(x4+y“+z4>+.... (1)
and similarly for Ag* ion in Fig. 2 as
V=V0+%a(x2+y2)+%a' zz+%b(xzz~yzz)+.... 2)

The inportance of the third order term of (1) in interpreting the observed facts of
structural phase transition in Cul was first pointed out by the present author as early
as in 1952, and by making detailed calculation it was shown that the entropy changes
in 7v-B and B -a phase transitions and observed large Debye-Waller factor can be
quantitatively well explained.” A similar calculation based on the potential (2) for Agl
was also carried out by Hoshino et al ? and the results were successfully compared
with their experimental data of X-ray scattering.

The aim of this paper is to generalize our previous theory so as to determine both
the anharmonic potential and amplitude of the anharmonic vibration for Cu ion in Cul
self-consistently as functions of temperature and to propose a possible mechanism of

sublattice melting.
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§2 Self-consistent Einstein Model

To deal with large anharmonic vibration of ion around a non-centro symmetric site,
the most simple and effective approach will be to adopt the self-consistent phonon
theory (SCPT). As one simplified version of SCPT, we formulate in this section a
variation principle which leads to the self-consistent Einstein model.”

Consider for example a Cu ion in a-Cul crystal which is surrounded by four I ions

tetrahedrally. Let us assume an anharmonic potential for the Cu ion in a form:

¢(x,y,z)=%a(x2+y2+zz)+b xyz+%c(,\'1+y4+z4)+... 3)

where a, b and ¢ are parameters to be determined later self-consistently. In the high
temperature approximation, where classical statistical mechanics may be used, the

probability distribution of Cu ion displacement is described by a density function

p(x,y,z)=exp[ — ¢ (x,y,2) kT 1/ Z @)
with
Z= g S g expl — @ (x,y,z) kg T Jdxdydz.
5)
Let v(r) be the relevant potential acting between a Cu ion and I ion separated by the
distance r. The potential energy of a Cu ion is then a sum of four terms v(R,—r), i =
1, 2, 3, 4, contributed from the four neighbouring I ions located at R, = (d,d,d), R, =
(—d,—d,d), R; = (d,—d,—d), and R, = (—d,d, —d) respectively (see Fig. 1). Thus we
denote the potential energy of a Cu ion as
4
V( X ,Y) ) - ( R —r .
’ i2=lv ) (6)
Now a variation principle to determine the anharmonic motion of the Cu ion can be

formulated in the following way: By making use of a notation

<..... >=§ X dedydz p(X,y,z)..... (7

we give a trial free energy per Cu ion in the form:

f(a,b,c)=<V(x,y,Z)>+kBT<ln p(x,y,z)>. ®
We require that the free energy f(a,b,c) should be minimum with respect to the

variation of the parameters a,b and c:

df(Ca,b,c)da=df(a,b,c), db=0df(a,b,c)  dc=0. 9)

This gives us a set of coupled equations to determine the parameters a, b and ¢ and
hence the probabilty distributuion p(zx,y,z) self-consistently. It turns out that the

equations take on very simple forms:
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a=< azV(X,)'.z)/5x2>EFa(a,b,c) (10a)
b=<0’V(x,y,2)/9xdydz>=F (a,b,c) (10b)
¢=(1,/6)<3'V(x,y,2)/9x>=F(a,b,c). (100)

The proof of the statements (10a—c) is based on the following two facts that the
characteristic function of the probability distribution p(x,y,z) can be defined as
<exp(ik.r)>=exp[ — (K /8)<r’> —ikkk,<xyz>,
FCL/41 ) (kK kD <S> + L] an
and the cumulant averages in (11), <r?>, <xyz>. and <z*>. are linearly

independent functions of a, b and ¢. To be more precise, we assume that V(r) may be

expressed as

<v(ry>=| v <exp( —ikr)>dk a2

and put this in (8) and use the formula (11). Then we find that < V(r) > is a
function of a, b and ¢ only through < r* >, < xyz >. and < z' >.. Therefore if
we perform the variation of f(a,b,c) with respect to a,b and ¢, we finally obtain a set

of coupled equations of the following forms:

C,0<’>_/9a+C,0 <xyz> 9a+C,0<x >, 9a=0

C,0<r"™>_/3b+C,0 <xyz> 9c+C,0<x >, c=0

Cla<rz>c/8c+ C,0 <xyz>, 9c¢+C,0 <x'>_/3c=0 13
with

Clz—%a—( 1/6) S sz(k)<exp( i-k.or)>dk

C,=—b—i Sk1k2k3V(k)<exp( i-kor)>dk

Cy=—(3/0)e+(1/8) | 'V (k) <exp(i-ke)>dk. (10

Because < ¥ >, < zyz >.and < x' >, are linearly independent functions of a,b

and c, the associated Jacobian cannot vanish:

0 <r2>c/aa 0 <xyz>, 0a 0 <x4>c/aa..
d<r’>db d<xyz>, 9b d<x>_db.. %0 15
0 <r2>c/8c 0 <xyz>_, dc 0 <x4>c/ac..
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Thus it follows from (13) and (15) that
C,=C,=C3=0. (16)
It is an easy task to check that (16) is equivalent to (10 a—c).

§3 Application to Sublattice Melting

The main result (10 a—c) derived in §2 has very clear physical meaning. It says
that the initially assumed potential ¢ (x,y,z) should be equal to <V(r)> which is the
actual potential averaged over anharmonic motion under the assumed potential ¢ . In
another word the formula (3) should be an expansion form of <V(z,y,z)> around the
origin. Now we shall apply our general formulation to a case of specific potential v(r).
Although there are debates on the interatomic(ionic) potentials which play essential
role in superionic conductors, we focus our attention on the precursor behaviour of Cu
ion and regard repulsive force between Cu* ion and four neighbouring I~ ions most

important. For simplicity we shall take

v(ir)=vexp(—s|r]|) an

and calculate

4
<V(r)>=2lv<exp(—s|R,—r | )>
i=1

(18)
where with minor modification the expansion (11) may be utilized to obtain
( 5 s
<V(r)>=(2vexp(—s|R.—r .
=, 0 | i | ) ) eXp( 3ﬁ<xyz>c) (19)

Since we are mainly interested in the third order anharmonicity, the effects of <r*>.
or <z*>. are renormalized into the prefactor in (19). Thus eventually we arrive at an

equatioan (10b) for b in a form
3

b=T,(a,b,c)=b =< ) 0
b(a c) oeXD( 3[5 XYZ>C)

As already noticed, <xyz>. is a function of b, and the solution of eq. (20) can be
attained by a graphical method as schematically shown in Fig. 3. It turns out that we
have no solution above a certain temperature 7., indicating that a local minimum of
the free energy disappears and Cu ion becomes unstable at the assumed tetrahedral
position. This suggests the occurrence of the sublattice melting. The actual sublattice
melting would, however, take place at a certain temperature T, lower than T.. This
can be seen from the following observation. The assumed potential (3) has finite
barriers along the direction with xyz < 0. The height of the barrier ¢ .(b) is mainly

determined by the value of b, and we have to impose a condition that
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()
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T<T.

-0

Fig. 3 Graphical representation of the equation (20) with fixed a and c.
kyT<.(b) o)

in order that our theory should be consistent. Thus value of & is bounded for each
temperature at, say, b.(T) by the condition (21). Therefore at a certain temperature
T.. the free energy will become equal at both the minimum point b, and boundary
point b(T.). In essence, the anharmonic potential (3) causes a large anisotropic
vibration of Cu ion, which in turn produces more anisotropic effective potential,
leading to the reduction in the height of the potential barriers along the special
directions and finally yielding an instability of the original position of the Cu ion

accompanied by an ionic migration through the lowered potential barriers.
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