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A theory of quantum paraelectricity is presented to explain the nearly ferroelectric
properties of some perovskite structure substances such as SrTiO; and KTaO; on the
basis of the self-consistent phonon approximation. Particular emphasis is laid upon the
effect of the mode-mode couplings on the phase boundary between ferro and
paraelectric regions and it is shown that the trend toward the quantum paraelectricity
is suppressed by short range interaction and enhanced by long range dipole

interactions.

§1. Introduction

It is now well known that some of the perovskite structure oxides such as SrTiO;
and KTaO; exhibit large dielectric constant at low temperatures and yet do not make
any transition to the ferroelectric phase. This is believed to be due to large zero point
vibrations, and such a dielectric substance is sometime called quantum paraelectrics,
bearing close similarity with the “quantum liquid” in which the long range crystalline
order is prevented by large zero point motions. The possibility for the existence of
quantum paraelectrics was suggested as early as in 1952 by Barrett”, who worked out

a simple theory to give an expression for the dielectric constant of the form

- M (1)
(T, 2)coth( T,/ 2T )—To

€

It is obvious that & given by (1) tends to a constant value 2M_ /(T,—2T,) near
absolute zero temperature ( T — 0 ) and follows the Curie-Weiss lawe ~M_/( T
—T, )at high temperatures. The parameter T, is related to a frequecy Qof the relevant
harmonic oscillator as T, = hQ ks, ks being Boltzmann constant. As to the cross
over from clssical to quantum regimes, Kurtz made an argument that when the ionic

displacement Ax, estimated from extrapolated Curie temperature T, by a formula
1 2
kBTO=§K<Ax> , (2)

becomes smaller than the ionic displacement Ax of zero point vibration, the quantum
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effect should suppress the ferroelectricity?. The force constant K in (2) turns out
experimentally to be nearly the same value 5.5X%10* dyne, cm for most ferroelectric
perovskite oxides.

Detailed experimental measurement of dielectic constant at very low temperatures
for SrTiO; was performed by Miiller and Burkard®, who compared their observed data

with Barrett formula (1) taking the following parameters:
T, =84K, T,=38K, M=9X10*‘K 3

Although the expression (1) can realize qualitative feature of their observation, it
fails to give a quantitatively good fit to the experimental data for some range of the
measured temperatures. This discrepancy would be caused by the simplified single
mode mean field theory of Barrett, and in order to have a more quantitative
explanation it is pointed out that mode-mode couplings and multi-mode argument
must be introduced. One aim of the present paper is to undertake such a task for
understanding of quantum paraelectricity on a more quantitative basis.

More recently, Rytz, Hochli and Biltz¥ have determined the temperature dependence
of dielectric constants of quantum paraelectrics KTaO; , KTa,_, Nb, O; and K,_, Na,
TaO; . In particular they report that the mixed crystals with x. = 0.008 for KTa,_,
Nb, O; and y. = 0.12 for K,_, Na, TaO; show the existence of temperature ranges in

which a characteristic temperature variation of dielectric constant appears such that

e~T—T 7‘={ 2.0 for xc @
2.1 for yc .

This behaviour would closely related to a cross over phenomenon between quantum
para and ferroelectricity, and may be explained within the framework of renormalizati-
on group approach as have been tried by Schneider, Beck and Stroll®. Another
important point to be asked is to explore the phase boundary which separates the
quantum para phase and ordinary ferroelectric phase.® By introducing a suitable
variable S and ferroelectric phase transition temperature T. , the boundary may be

described in T.—S plane as
T~ (S—S.)"° )

where S<S. corresponds to the quantum para region. The meaning of S is however
not quite clear and hence the second aim of this paper will be to present a simple and
systematic description of the cross over and phase boundary problems based on a

simple model.

§2. Fomulation

Focussing on the sublattice of ions which play primary role in ferroelectricity, we
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start with a model Hamiltonian of the following form:

1

_1 4.
H—-Zm;Q|+2

2 2 1 4
nw s Q i+ZZ‘,Q i
i i
—2.SiiQiQi—2DiiQiQ; ®)
ij i
where Q; is the displacement of the i-th atom with mass m, S; the short range
interaction parameter, and D; denotes the coefficient of long range ( dipole-dipole )
interaction. Assuming certain crystalline symmetry, we introduce Fourier transformed

quantities : For instance the Fourier components of atomic displacement are defined

as

_1
Q(a)=(N) 22Qiexp( —iq-ri)

and for short range interaction

S(q)=>Sijexp( —iq-rij) (8)

i

which may be put in the form when only nearest neighbour interactions are

considered
S(q) = S(0)C(q) 9)
with

c(q)=(1/z)ZAexp(—iq-A) , 10

z being the number of nearest neighbours. A are the vectors connecting a center and

its nearest neighbour atoms. For the long range interaction we have
D (a)=e22[ 32%;—r%;),/r%; JexpCiq-rij) a
ij
which is approximated by the continuum model in later simplifying argument,taking

D(q)=D(C0)(1—3cos?28 )(3,”/q%3)(sin qa—qa cos qa)

=D(0)0d(q,cosb )

with

1
cos @ =q;,q, q=(q®+aqy?+q;2)? 13
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D(0) is the limiting value of D(q) for ¢ = 0 and cosd = 0. By making use of the

Fourier tranform, the potential energy part of (6) can be written as

V=X1lnes—S(a)-D(a) Il QCa) |’
q

+(B/4N)2222°Q(a1)Q(q2)Q(q3)Q( —q1—aqz—aq3) 14

q1 g2 q3

The self-consistent phonon approximation amounts to replace the quartic term V. in

the potential energy V by a quadratic form such as
v4=(3B/zN>Z§<|Q<k>|2> KICO R 09
q
and hence the potential energy is assumed to take on
.V=}%%mwz(q)lQ(q)lz 19
where
mwz(q)=mws2—s(q)—D(q)+(3B/N)%} <lace ) 1>,

an
The mean square average of g-mode amplitude < | Q (q) | > in (17) may be

evaluated as

<1Q(a) 15> =(4/2n0(q) dcoth[ 2w (a), 2k T ] 19

and equations (17) and (18) give a set of basic formulae in the present self-consistent

phonon approximation. Writing as
A=J(0)—nws (192)
J(0)=S(0)+D(0) (19b)

the ferroelectric soft mode frequency® (0) is determined from

n02(0),/A=(34B,/20AN )Y@ (a) ‘coth[ 2w (q), 2k, T 1—1
0

For later numerical computation, we make the equation (20) dimensionless form by

introducing the following quantities

y=nw(0) /7(0), te=J(0) A, D=D(0)/J(0), (da)
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and two characteristic temperatures

1 1
To=AJ(0)/3k;B, Ti=#J(0)?/ 2k,n’ (21b)

T, is served as a temperture scale and T, T, is a ( quantum ) parameter such that
the larger T, T, is, the more favaourable is the quantum para state. The

dimensionless equation determining y is

1
cothf (T1,/T){y+1—C(q)+D(C(g)—0(q,cos8 )) }2]
-1

1
To N [y+1—C(ga)+D(C(q)—06(q,cos8)) ]2 .

In §3 will perform numerical analysis on the basis of this equation, by calculating y as

a function of T /T, for various values of the parameters t, , T,/ T, and D.

§3 Numerical Analysis

Let us first examine the case of D = 0. Fig. 1 shows the calculated y - T T,
relation for three different values of the quantum parameter T, /T, = 2.0, 0.9, 0.5 and
for three values of the short range interaction parameter t, = 0.1, 1, 10. For large
T,/T, there appears no softening and y, which is proportional to the inverse of
dielectric constant due to LST relationship, tends to a constant value at low
temperatures, while for small T,”T, = 0.5 softening in y eventually gives rise to a
phase transition at a critical temperature T. which is independent of t, . At
sufficiently high temperatures, however, for all cases the Curie-Weiss law becomes to
hold. From these figures it is seen that the temperature dependence of y is governed
by T,/T, at low temperatures and by t, at high temperatures. In Fig. 2 a comparison
between the present theory and experimental data due to Muller and Burkard is made
for dielectric constant normalized with the saturated valuee , (~1y,) at very low
temperature. We note that theoretical fit is improved much better than Barrett
theory. Fig. 3 indicates an example of y-T T, relation for a model quantum
paraelectrics having quantum parameter near a critical value (T, /T.,). = 0.8965 (see
Fig.4). If we assume y(~ 1/ ¢) ~ T7, it turns out that 7 is about 2.1 in certain

temperature region as experimentally observed.
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Fig. 1 Square of reduced ferroelectric soft phonon frequency
vs reduced temperature T T, The used values of t, are:

t, = 0.1: ( ), to=1: (=), t,=10: (—>
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Fig. 2 Comparison of experimental and calculated values of ( y,/y )

as a function of T T, - :experiment, : present theory

In order to determine the phase boundary between quantum para and ferroelectric

states, we put in (22) y = 0 and T = T., obtaining an equation to fix T. :
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Fig. 3 A typical y-T /T, curve for a model quantum paraelectrics with
(T, /T, value near (T, T.). . It is seen that there is a certain

temperature range where y = T? holds.

coth[ Tl/Tc(l_C(q))%]

To/T1=1/N2 (23)

1
(1—C(qg))?

If we use a simple mean field approximation by discarding the phonon dispersion, the
equation (23) reduces to the Barrett theory

T,/ T, =coth ( T,/T.) @4

In Fig. 4 we depict T. calculated from (23) and (24) as functions of the quantum
parameter T,/T, . We can see from this that self consistent phonon theory which
takes account of multi-phonon modes yields narrower quantum para region in ( T./ -

T. ) -( T.,/T, ) diagram compared with Barrett ( single mode mean field ) theory.

Tl

1.0
Para

0.5

Ferro

[ 0.5 9 WVh

Fig. 4 Phase diagram in (T./T,) - (T,T,) plane. The outer boundary

corresponds to the Barrett theory and inner boundary to the present theory.
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Now turning to the case D # 0, we examine the effect of long range dipole
interaction on quantum paraelctricity. Fig. 5 shows calculated y-T /T, relation for
various D values when t, = 0.01 and T,/T, = 0.94 are fixed. Since the chosen
T,/ T, = 0.94 exceeds (T, /T.). obtained in Fig. 4, the uppermost curve ( D = 0 )
belongs to the quantum para state with no softening. However with increasing D
value, the temperature variation of y becomes more enhanced and at last around 0.22
< D < 0.23 a softening takes place and ferroelectric phase is realized. Thus we find
that long range dipole-dipole interactions act to strengthen the trend toward
ferroelectricity. But more careful calculation suggests that for large D value different
softening in zone boundary mode may be possible, indicating the existence of some
kind of antiferroelectric phase. In order to discuss such a new possibility, however, our

model is too simple and it is out of scope of the present theory.
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0.01 01 ; 10 T/ To

Fig. 5 The effect of long range interaction D on y - T /T, relation.
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