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Abstract

A geometrical association between octonions and a null cone in the ten-dimensional
Minkowski space-time is discussed. A point on the intersection of the null cone with a
spatial hyperplane can be mapped to a point on the octonionic Gauss plane by a
stereographic projection. Then, we may see that a null direction in the ten-dimensional
Minkowski space-time corresponds to an octonion. Identifying such an octonion as an
(SO(8)—) vectorial octonion, left- and right-acted spinorial octonions are defined. A
connection between these three octonions is aregued.

1. Introduction

One of the recent developments of mathematical physics revealed that the space-
time is ten-dimension. Particularly, by great success of the superstring theory!, one
believes that the space-time dimension of the era at which all the forces were unified
is certainly “ten”. Namely, in only the ten-dimension, we have a consistent unified
theory.

Kugo and Townsend? studied an association of the assosiative division algebras with
space-time dimensions by a systematic method. They obtained the association of
isomorphisms SL(2, R) = SO(2, 1), SL(2, C) = SO(3, 1) and SL(2, H) = SO, 1),
where R is real numbers, C complex numbers and H quaternions, and SO(2, 1) is the
symmetry to three-, SO(3, 1) four- and SO(5, 1) six-dimensional Minkowski space-
time. Although they had guessed that octonions which is one of division algebras may
be associated with the ten-dimensional Minkowski space-time, this could not be proved
because of the nonassociativity of octonions.

This problem was solved by Davies and Joshi®. They were proved, by a bimodular
representaion?, that octonions associate with the ten-dimensional Minkowski space-
time. Further, more recently, Evans established an explicit correspondence between
simple super-Yang-Mills and classical superstrings in the Minkowski space-time of
dimensions 3, 4, 6, and 10 and real numbers, complex numbers, quaternions and
octonions, respectively®. Thus, we believe that octonions play a fundamental role in
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the ten-dimensional Minkowski space-time.

In this paper, we describe only the association between the ten-dimensional Minkow-
ski space-time and the octonions, since we are interested in the ten-dimension, only.
Moreover, we are not only interested in the algebraic association but also a geometric
one. An octonion naturally corresponds to a null direction in the ten-dimensional
Minkowski space-time. Namely, the geometry with which we deal is a null cone
geometry.

2 . Algebra of Octonions
In this section, we briefly describe an algebra of octonions denoted by 0%. We define
a<s 0 as

a= a-+ i1d1+ ...... + i7CZ7, (2_1>
where i), iy, ...... , i are octonion imaginary units having the relations
lalp = — Oas+ ic€asc, (A, B, C=12, ..... s 7), (2_2)

€ac = €asc) = 1, for ABC = 123, 145, 176, 246, 257, 347, 365.
And we define the octonion conjugate of a as
a=a—bha— ... —bas. (2-3)
Then, for a, b € 0, we have an equation
ab = ba. (2-4)

This algebra is not only noncommutative but also nonassosiative, that is, for a, b, ¢
€ 0,

[a, b, c] = (ab)c—a(be) + 0. (2-5)
We define the inner product of @, b € O as
<a, b> =+ (ab+ba) = 4 (ab+ ba). (2-6)
Then, with another ¢ € 0, we may prove
{a, be) =<b, ca> = <{c, abd. (2-7)
The norm of a is denoted by its self inner product as follows :
N(a) = <a, a>. (2-8)
Note that the following equation colds for @, b € 0O
N(ab) = N(a)N(b). (2-9)

Thus, octonions are the division algebra.
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3 . Future Null Cone in Ten-dimensional Minkowski Space-time and Octonionic
Gauss Plane
Let us consider a future null cone N* with a light source at the origin in the
ten-dimensional Minkowski space-time M'® with the coodinate (¢, x, u, ...... , Y1, 2),
which the metric is defined by

7% = diag(l, —1, ...... ,—1,(aq, 6=0,1, ...... , 9). (3-1)
We denote the intersection of N* with a spatial hyperplane ¢t =1 by S* which is
equivarent to an 8-sphere with unit radius. Namely, a point (1, T, Y1y e .Uz, 2) on S*
satisfies
(Z)*+(31)*+ ...... +(z7)2+(2) = 1. (3-2)

Now, we consider a vector V¢ passing through the origin O. If V¢ is a future
time-like vector, then the intersection of the straight line along V* with the hyperplane
t =1 is inside S*, and if V¢ is a space-like vector, then te intersection is outside S+.
Futhermore, if V¢ is a future null vector, then the intersection is on S*. Thus, the
direction of (a future caunal and space-like vector) V' may be determined by a point
on the hyperplane ¢t =1 ; (V'/V° VZ/V° ...... , VIVO).

Introduce a null vector L? passing through the origin O, and take its coodinate
components as follows ;

L°=(T, X, Y, ... . Y 2, (3-3a)
where
LoL®=(T)>2—(X)>?—(Y)*— ...... —(Y)*—(Z2)?*=0, T >0. (3-3b)

The direction of L? from the above discussions, is determined uniquely by a point on
S+, and we denote this point by P (Fig. 1) ;

P(X/T, /T, ...... , Y2/T, ZIT) € R°. (3-4a)
time
M® 1 e

Rs

A)ace space

Fig. 1 S* = 5% as the intersection of N* with a spatial hyperplane t = 1
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north pole P

¢ >

Fig. 2 The stereographic projection of S* to octonionic Gauss plane =

These nine tuples, of couse, satisfy the same condition as (3-2).

Let us consider an extended Riemann sphere on the octonionic Gauss plane X which
is octonionic space including infinity. Since this extended Riemann sphere is equivalent
to S®, we may identify S* with this, and by the stereographic projection from the north

pole (0, ...... ,0,1) € R°to z= 0, we may map any points on S* to the corresponding

points labelled by octonions on X'. Now, we denote the mapping point on X from the
point P of (3-4a) by ¢ (Fig. 2). Then by this &, P of (3-4a) may be rewritted
as follows ;

E+ €& K, © 2{iz, & 2 > B
P T MOET - MET I wpFT) (G4
or coversely, by the components of P, £ may by written as follws ;
¢ = 1—(1Z/T (%Hl%wt ...... +i7%>. (3-5)

Thus, we certainly establish one-to-one correspondence between a null direction in M!°
and an octonion.

Although & of (3-5) corresponds to any points on S+, it is difficult to represent the
north pole by it, since § is infinity at this point. Therefore, in order to avoid using this
infinite coodinate, we write & by a pair (&, ) of octonions as follows ;

g = 67?—1! (376)

and then the north pole may be represented by & =1 and n = 0. These are to be
projective octonionic coodinates, that is ; the pair (&, ) and (&% %*) are identified,
if &p7!= &*p* ! or » = »* = 0”. Thus, we may regard S* as a realization of an
octonionic projective line OP'.

4 . Vectorial Octonions and Spinorial Octonions

In sec. 3, we considered correspondance between a null line in M!® and an octonion.
Although a null line certainly corresponds to an octonion, since the octonion includes
an infinity, instead of it, we considered two octonions in the relation (3-6). In this
section, we show, in the viewpoint of the octonionic transfomation law, the relations
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between these three octonions.

Let us cosider a vector V(i =1, 2, ...... , 8) in the eight-dimensoinal Euclidian space
E®. We denote an SO(8) transformation matrix by t;. Then V; transforms under the
SO(8) transformation as follows ;

Vi—= ti Vi, tintin = Sij, det(fij) = 1. (4-1)

We consider a rotation of the vector V;: in (I, m) -plane and denote the operator
indicating this rotation by #um. Note that fum: is not only an element of SO(8), but
also an element of SO(2). Then, a rotation in £®* may be represented by composition
of some 2-planes in E® that is,

tij = t(ll”'l])iklt(IZMZ)klkZ ------ t(lnmn)kn—ljy (4_2)

where # < 28 since SO(8) is the 28-parameter group and SO(2) is the 1-parameter
group.
Let us take an octonionic representation of the vector V; as follows |

V = M+i1‘/2+ ...... +i71/8. (4—3)
Now, we define following octonions

Wum = €08 (0/2)+ in-15in (6/2), (m + 1), (4-4a)
Wum = -1 €08 (6/2)— in-15in (6/2), (I #+ m). (4-4b)

Then we may see that the octonionic transformation for V of (4-3)
V = ioi(Wam Vwom) 111, (io=1) (4-5)
corresponds to a rotation of Vi in (/, m)-plane. Indeed, if we put

i—l—l(W(lm) VW( lm)) i_l—l
= lumn; Vi+ Gbimya; Vi+ ... + i7tmys; Vi, (4-6)

then we obtain for the 8 X 8 matrix fm), dropping the indices 7 and j which indicate the
(7, j)-component of the matrix,

/ m
1, O 0
0 cos 6 ... 0 ...... —sin 6 [
t m) — : . . M _
(1m) O 1, 0 (4-7)
0 sin @ ...... 0 ...... cos 6 0! m
0 0 1,

where 1, 15 and 1, are unit matrices of the rank p, ¢ and » (where p+qg+r=6),
respectively, and this 8 X8 matrix certainly expresses a rotation of a vector in (/,

m)-plane. Thus, from (4-5) and (4-7), we obtain a general rotation of an octonion
V.,
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V - l.—zl-l(W(t',ml)( ...... (l._zn_l(W(z,,mn) VW((,,m,,)) {z"—l) ...... )W(luru)) i_ll—l- (4"8)

We call octonions transforming as (4-8) wvectorial octonions, and we denote a space of
the vectorial octonions by Ov.

To the vectorial octonions, we define left- and right-acted spinorial octonions as O
and Ok respectively, of which elements transform, when the vectorial octonion trans-
forms by (4-8), as follows ;

b = Ln-(wamn(...... (Lint(WtammyB)) e oo ) for ¢ € O, (4-9a)
X, - i(( '''''' ((Z/W(lnmn)) i—ln—l) ------ )W(llmll) i_ll—l for xl = OR. (4—103)

If we write these octonions, ¢ and %', as

= ot i+ ...... + i7 ¢, - (4-11)
X =x+tihnt ...... ~+ @77, (4-12)

then we may rewrite (4-9a) and (4-10a) as

¢ i(t0A¢A+ Lhadat...... + i7l’7A¢A), (4'9b>
x - t(toaxa+ hitvaxa+ ...... +irtrarxar), (4-10b)
and then, we may prove for taz and tas (A, B =0, 1, ...... JTA, B=0,1, ... ,7)
tastsc = Oas, det(tas) = 1, (4-9c¢)
tarcrtper = Swp, det(tas) = 1. (4-10c)

Thus, since both #s and tas satisfy the SO(8) conditions, the octonionic trnsforma-
tions (4-9a) and (4-10a) are two different octonionic representations of SO(8) rotations
from (4-8).

Here, we return to the three octonions of (3-6) . If we define § as a vectorial octonion,
then & and 77" may be regavded as a left- and right-acted spinorial octonion, respective-
ly, since a product of these two octonions becomes a vectorial octonion. Therefore, if
we put

=40, 7=2 < Or (4-13)
then we have

¢ = ¢x' /N2, (4-14)

and the projective octonionic line realization S* becomes an octonionic line in the
two-dimensional octonionic space O X Ok.

5 . Invariant Quantities of Vectorial and Spinorial Octonions and Principle of
Triality
We have, for vectorial octonions and left- and right-acted spinorial octonions, the
invariant quantities under the respective octonionic transformations (4-8), (4-9a)
and (4-10a), respectively .
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< 11/, 127> = inv., for ‘1/', ‘27 € Oy, (5-1)
($, $> = inv., for $, $ € O, (5-2)
<;if', x> = inv., for 715’, = Oz, (5-3)
Furthermore, we have
KV, ¢x> =inv, for VE Oy, d € O, x' € O, (5-4a)

since ¢z’ € Oy from (4-9a), (4-10a) and (4-8), and (4-13a) hold for any two vectorial
octonions.

Note that, from (2-7), (5-4a) may be also written as follows ;
(V, ¢x> =<2, V> =<Z, V>, (5-4b)

and that Oy, O, and O three octonionic spaces which afford the three inequivalent
octonionic representations of SO(8). Then, we can find an interesting law which is
called the principle of triality® | the three octonionic spaces, which are the vectorial
octonionic space Ov, the left-acted spinorial octoniownic space Op and the rvight-acted
spinorial octonionic space Og, ave all on an equal footing.

6 . Conclusions

In the previous sections, we could see that octonions may be physically associated
with a null cone in M*. In consequence, a null line in M is equivalent to a projective
octonionic line, which is an octonionic line in Q; X O, where O, and Oy is the left- and
right-acted spinorial octonionic space, respectively.

In the superstring theory, SO(8)-spinor play an important role. Mereover, in this
theory, by using a light cone gauge, the important space-time quantites are
SO(8)-tensorial objects. Our octonions may be corresponded to these quantities, that is,
the vectorial octonions are octonionic representations, and the two spinorial octonions
are octonionic representations, to SO(8)-vectors and two SO(8)-spinors, respetively.

However, the most advantage of our representations is that we can uniformly deal
with a term of octonionns their objects. Furthermore, we may guess that the plinciple
of triality suggests that our three octonions, which are equivalent by this plinciple, are
some elementaly objects in the superspace descriptions.
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Appendix A : Useful Formulas of Octonions

We here give some formulas with respect to the associator of octonions®.

Let us put a, b, ¢ € 0. Then the associator (2-5) is pure inaginary, and we have

From (Al), we may prove the important identities as follows ;

(ab)(ca) = a(be)a, (A3)

where one must note that (ba)(ac) + bd’ec.

Appendix B : SO(8) Soldering Forms induced by Octonions

If we represent V, ¢ and x" as (4-3), (4-11) and (4-12), respectively, then (5-2)
may be also written as follws ;

<V, ¢ = Gina Vidaxa, (B1)

where, denoting the 8 X8 matrices 044, by 0; whose components are labeled as (A, A’),

we

have
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From (B2), we have for these .44 identities

O(ilaa’\O5ygar = 05048, (B3a)
O(i144" 05 ap = O0:;0arp. (B3b)

Moreover, from (B1), we have also
04|14’ 05\B)Br = 0Oia(a’|0iB|B)y = 0aslarp. (B4>

The identities (B3) and (B4) agree with the conditions for the Clebsch-Gordan
coefficients or the SO(8)-soldering forms which couple the SO(8)-vector to the two
SO(8)-reduced spinors.



