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Summary

It has been shown, recently, that the division algebras are closely related to the
underlying symmetries of the superstring theories or Kaluza-Klein theory of unifica-
tion of all physical forces. Especially octonions play a specially important part in these
theories implicitly in 10 dimensional superstring theories through “triality”. ‘While in
the Kaluza-Klein theory, torsion plays an important part. These triality, parallelizing
torsions and octonions in the theory are closely related, an explicit use of octonions in
the theory is quite desirable such as an invariant action or a Lagrangian, Maurer-
Cartan-Schouten differential equation but has not yet been done,

For the purpose, we have developed a theory of functions of an octonion variable
which will be of use if the theory is explicitly expressed by an octonion form.

In this paper, we present an attempt to formulate these superstring theories in an
explicit octonion form so that the structure of the theory will be more transparent. For
this purpose, we look superstring theoy of Green-Schwarz superspace theory from the
view point of an octonion formulation of the theory.”

§1. Introduction

In the superstring theory of Green-Schwarz, the theory is invariant under supersym-
metric transformations iff the following conditions are satisfied :

LGOI e =0 (1.1

(x) After the paper was submitted to the Editor we have come to know (Dr. T. Kayano have
called attention to the paper by 1. Oda, T. Kimura and A. Nakamura : Prog. Theor, Phys.
80 (1988) 367.) that 1. Oda et al. have published a paper in which they have reported the
study of superparticles using an octonionic formulation. The results of the study is quite
useful to our study of the octonionic (or higher Cayley-Dickson hypercomplex numbers)
formulation of the superstring theory.
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It can be shown that these equations hold only in the following special dimensions?
of the space-time i. e.,
D= 3 : spinors are a Majorana type,
D= 4 spinors are a chiral or Majorana type,
D= 6 : spinors are chiral,
D= 10 : spinors are Majorana and Weyl type.
In these dimensions of space-time, as was shown earlier by several authors that spinors
and vectors are closely related to the division algebras of R, C, H and O, respectively.
Evans® expresssed (1. 1) into the I matrix form

Fma (ﬁFmrs) =0 (1. 2)

and the identities satisfied by these I" matrices are the basis for the invariance of the
supersymmetric transformations of the Lagrangian of the superstring theory of
Green-Schwarz. They derived the relation between the above identities and the triality
and the triality is due to the nature of the division algebras.

In this paper, we deal mainly with the action of Green-Schwarz in the superspace.
The action can be split into two parts and the second part is identified as the
Wess-Zumino term. When, the arbitrary constant coefficient of the second term is to
be put equal to one, the Wess-Zumino term becomes identical with the torsion and the
curvature of a group manifold becomes zero. The torsion is a parallelizing torsion and
the theory becomes a free fermion theory.

As Cartan and Schouten have shown, the parallelizing torsion can be equated to that
the Riemann curvature becomes zero. By adding antisymmentric torsion to the connec-
tion of S* or S, the Riemann curvature becomes zero.

The results are due to the existence of quaternions and octonions underlying the
relations. Several attempts by several authors -9 have been made to derive the
parallelizing torsion directly from the octonionic formulation in the supergravity
theory of 11 dimension. However, it seems to us that none of the attempts are
satisfactory in view of a complete theory of the octonionic formulation. We describe
this point in section 4. Now, we would like to make it clear that the relation of
Green-Schwarz theory to octonions in the following sections.

§2 . Green-Schwarz theory in the superspace.

As is well known, the superstring theory cannot be quantized by using a covariant
gauge in the superspace. As a result, a light-cone gauge is used. Starting from the
generalized action integral of Nambu-Goto action as follows

S = — % f T h et sudods 2.1)

where

”5 - aaXp _— ia—AF#aagA
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S, is clearly invariant under a supersymmentic transformation. By adding further a
term, S, :

S, = iﬂ f dodr ( — 16%9ax" (' Tu0:0" — G2TL3567)

(2.2)
+ &7 G'T*0.0" G°Tu056%) |

we examine the significance of these S; and S: in the following.
1) Superspace o —model.

We consider N =1 supersymmetry” (heterotic case) .

We have 10 bosonic coordinates X¢ and sixteen fermionic coordinates 6°. The
generators of the supersymmetric transformation satisfy the following relations :

[Pa, Pb]=0, [Pa, Qa]:O,

{Qa, Qs} = — 2% Ps (2.3
and satisfying the following normalization conditions are :

tr (PaPs) = 7av, tr(PaQaQs) = — ilaan (2. 4)
The elements of the supertranslation h :

h = eXFao% (2.5)

Using (2. 3), we have

h™'0:h = iVEPs — 3:0°Qa (2.6)
where

V= 0:.X% + 0:0°T 3:Q"* 2.7
then S; is given by

— o [den tr (W) (' 3,h) (2.8)

2r

The second term S, is the Wess-Zumino term corresponding to S; of (2.8) :

We= — Lﬁf d*&e*ty (h™'0:h) (h™'0;h) (h™'0kh) 2.9

To clarify the significance of the Wess-Zumino term, let us consider the following
action ! Si+a(WZ), a = a constant®.

When « =1, the torsion parallelizes the manifold : the Riemann curvature Rauca
becomes zero as a result, the geometry of the o-model has a renormalization group
infrared fixed point at ¢ = 1.

(i) Furthermore, the theory is an infinite dimensional local symmetry and it charac-
terizes Kac-Moody algebra. In the case of Green-Schwarz, the action is given as S;+ S..
The superstring theory is x symmetric. Due to the x symmetry, the coefficient of
Wess-Zumino term cannot be quantized. In the flat space, the existence of Wess-
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Zumino term leads to a torsion due to the anticommutation relation {Q., Qs =
~21T§,9Pa.

As described later, the same holds in the case of octonions, the vector fields E, and
E» made by octonions satisfy a commutation relation [ Es, Ebv](x) = — T%(x)E(x) as
described in detail in the next section.

Now we deal with torsions.

(ii) Differential geometry in superspace.”

Let 2" = (x™, 6*) be a point in the superspace, x™ be bosonic world coordinates, and

6* be anti-commuting fermionic world coordinates. Define a one-form {e“} as

et = dzMefy

We restrict ourselves to the case of N = 1, the case of ten dimension (heterotic) .
In a flat space, the superconnection is given by w% = 0 and the non-vanishing
components of torsion are T4 = 2I'%. The torsion is, by definition, given by

de® = e®e’I'ss, de®* =0 (2.10)
The solution of these equations are given by
e = dx® + dO°T'a0*, e = db*° (2.11)
and the vielbeins are given as

f= 0% ef=
eﬁ'}:(e es =10 ) (2.12)

ei = 0ul50°, ef = O
Now, noticing that the following three-form H :

1

H == 2 eaeﬂeapaaﬁ (2. 13)

is a closed form : dH = 0.
This equation can be shown, using the following identities for I" matrices, as :

Paaﬂ[urzs + Paﬁrpgé‘ + Farapgé‘ = 0 (2. 14)
Furthermore, H is exact :

H—=dB B=— %e“earaaﬁaﬂ.

Then, H, both closed and exact, can be regarded as a Wess-Zumino term.
Equation (2, 14) , as mentioned in Introduction, is equivalent to the equations (1, 1)
and (1, 2) and is important to our octonionic formulation of the supersymmetric theory.
The meaning of which will be discussed in the following sections.

Using the vielbein :

Ve = 0x® + $.0°T%0° = 0.2"e5, (2.15)
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0:0% = 0.ZMefy = V¢ (2.16)

the Green-Schwarz action can be written as
I _ S — 1/ 2 1 ij a b - iJ N M
=S5+ S =7 d’& —2*77 ViVinaw + 1€90,.270,Z" Bun (2.17)
where we have used the relation H=dB.

§ 3 . Triality.
Evans® considers the following map to introduce the triality :

7 VXSiXS—R, (v, & 1) — Yieav:iEana (3.1

Based on the Fierz equation (1.2) for the y matrices, he defined the triality.

The H introduced by (2. 13) in the last section : H = 1/2 (e%e®e?) Iy, when we consider
e’eV, e"eS,, e?ES_, the equations (2. 13) and (3. 1) are the condition for the triality.
This relation can be expressed, by using three octonions. Let A, B, C, where A be a
vector octonion, B and C be spinor octonions, then an adequate octonion form be

H=(A- (BC))
where (A - B) is a scalar product, then we have the following identities :
(a- (BO)) = (B - (cA)) = (c- (AB)).

From these relations, the nature of the triality of H becomes more transparent.
Now, we look at the action of Green-Schwarz given in (2.17) .
The first term is of the following form :

A-A=A- A=nA)

While the second term is to be derived from the three form H and is of the following
form :

(4 - BO)

In this connection, we have to note that this triality is also related to the Jordan
algebra Hi(A)»® as Gamba has described. To reveal a deeper meaning of the triality,
we need a thorough study of the octonions.

We do not describe the relation between the triality and the outer automorphisms of
SO(8)(Ds) here.

§4 . Octonions
Hasiewicz and Lukierski'® have given an extended equation of Cartan-Maurer
equation for S”. They introduced an octonion one-form on S7 :
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w(x)=xdc = —dxx = —alx) = vx)ea (4.1)

where e, are octonion units and satisfy the following equations :

Eqlp = — 6ab + fagec, e—a = — €q, <4. 2)
The two-form is
1 ,_
do(x) = > dx N dx
) (4,3)
=G w(x) N cu(x)+ (w(x)x, x, w(x))

where the last term in (4. 3) is the associator of octonions and is
(w(x)f, x, w(x)>a = 20%(x)w’(x) N 0(x) (4.4)

do®(x) = Tix)w’(x) N w’(x) (4.5)
here we have the following :

Tbc(x) c+ @bc(X) (4. 6)

The T4%«x) is the parallelizing torsion and agrees with that of Rooman’s :

p 1
S = _a'abc_7 {ea[eb, X, ecx]}

The equality of S to 7»%(x) can be derived if we put

r=(1+¢& (1-6)7"

n (4.1) .
Since Rooman obtained the torsion from the condition of parallelizability, the torsion
given by (4.6) is also parallelizable.

Hasiewicz and Lukierski!?, starting from the commutation relation for the vector
field E, in the S7 sphere :

[Ea, Eol(x) = —Te(x)Ed(x), (o, 6=1,2,...,7) (4.7)

and because the equations agree with eq. (4.5), defined T%(x) as a parallelizing
torsion.

§ 5. Fierz ldentity.

As pointed out by Evans and referred in this paper that the eq. (1.2) is the central
core of the demonstration that the torsion H should be closed. We, in this section,
present a different view of Goddard, Olive and Nahm!" to looking at the formulas (1.
2).

Let us consider a group G’ which contains a group G as a subgroup. Then G'/G is
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a symmetric space and the generator of the tangent space transforms under the G as
a fermion. Separate the generator g’, an element belonging to the g’ group, into an
even part and an odd part :

& =g+p (5.1)
The even generators T satisfy
[T* T =if*"T" (5.2)

Odd generators p° are orthogonal to the even generators and transform, in a similar
way to fermions, as follows :

[T, p°] = it°Mia (5.3)

The symmetric space assumes the following relations to be valid for its elements : let
p%, T, satisfy '

(2%, P] = X T (5. 4)
choosing
TAT'T) = yo,, Tp°p") = o,
we have
yX& = TAT[p*, 1) = TAT", p°), t°) = iyMés
and we obtain
[p%, p] = iM s T"

Thus, using (5.3) and (5.4), we obtain the relation
dimg | -
[[p*, £°). 0] = 22 MiuMop

dimg . . 3 .
This relation shows that Z}l MasM3s is the Riemann tensor of the symmetric space.

Then, by the Jacobi identity for p® generators, we obtain the Fierz equation :

dimg( S S

S (Miadts + My Mo+ Miabis) = 0

These relations and octonions reveal a close relationship between them but it is not yet
clear whether these relations can completely be reduced to the nature of octonions or

not.

§6 . Extension of octonions to 16-nions.
As described above, superstring theory uses 10 dimensional spinors and vectors'?.
Even though the central core of these quantities is octonions, if we deal with these



180 K. IMAEDA - Susumu OHTA *+ Mari IMAEDA - H. TACHIBANA

quantities in (9, 1) space-time we have to extend octonions to 16-nions of Cayley-
Dickson algebras whose quadratic signatures are
(+————————= ) or (++———————— ) or (++++—————— )

which are the space-time of (15, 1), (14, 2) or (12, 4), respectively. Such a hypercomplex
system can be given by complexifying the 16-nions and the theory of functions of such
a hyperecomplex variable can be readily made using the theory we have already
developed as given in ref.'®

However, we have to use vectors and spinors in the (9,1) space-time instead of 16
-nions in the (15, 1) space-time. In order that a spinors in the (9, 1) space-time remains
a spinor in the (9,1) space-time under a general rotation in the (9,1) space-time, the
spinor must be a zero divisor lying on the light-cone whose vertex is at the origin of
the coordinate in the (15,1) space-time as a hypercomplex number. The condition
puts a severe constraint for the use of 16-nions for the light-cone spinors of (9,1)
space-time.

The study on this problem is in progress and will be published in a near future.
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