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Abstract

In a previous paper we have formulated a spinor formalism for Poincaré gauge
theory. This formalism introduces the notion of a null tetrad in a remarkably natural
way, and will be useful to study massless fields. In this paper we apply our formalism
to the investigation of a “null field” in a free Lorentz gauge field under the condition
Ci = (G = (G = 0. We find two such modes with spin-parity 1* and 1~ : they can not
coexist at the same time, however.

§ 1. Introduction

In a previous paper”* we have formulated a spinor formalism for Poincaré gauge
theory (PGT) with the most general Lagrangian density proposed by Hayashi?. In
PGT the Lorentz gauge field Axm. as well as the translational gauge field ¢i” may be
a propagating field with positive energy.

In this paper we apply our spinor formalism to the investigation of a “null field”®*»®

(which is a typical massless mode) in a free Lorentz gauge field under the condition
Ci = C; = (C; = 0. The spinor technique has grown up with the study of general
relativity, and is especially successful when applied to the study of gravitational
radiation. Accordingly, our spinor formalism could have an advantage over the
tensor formalism to investigate the propagating massless gauge fields.

In §2 under the weak field approximation, we give the equations for the free
Lorentz gauge field Axms, and in § 3 their spinor form. §4 and §5 are devoted to
preparations for rewriting the equations obtained in a previous section in a form
written in terms of dyad components. In §6 we investigate the existence of
a "null field” in PGT, and find such a field that has spin-parity 1- or 1 under
the adequate parameter conditions. The final section is devoted to conclusions.

* We shall refer this reference as I.
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§2 . Weak field approximation

In this section we consider the weak field approximation for the Lorentz gauge field
Akmp In vacuum, i.e., ¢ = 0. In order to do this, we assume that all the constants a7
= 1~6) are of the same order of magnitude, and normalize them as

ai = —(1/x)b:. (i = 1~6) (2.1)

Here x is dimensionless Einstein’s gravitational constant, i.e., x = M,2X (Einstein’s
gravitational constant) = 1.48x107%.

For brevity, we assume here that b; = 0[1], and the field 4« and Aumr can be
expanded into power series of ¥'? in a weak field approximation. And neglecting the
higher order terms, we put as follows

b = i (2.2)

and

(1)
Akmn = )(UZAkmn- (2 . 3)

Inserting these expansions into (I :2.2.7) and (I :2.3.1), and neglecting the higher
order terms, we obtain the following equations :

(1)
Hkmnp,p = 0 (24)
and
(1)
Fremne o — (). (2.5)
Here note that
Fkmne — gy ey premn 2.6)
with
1) (1)
kanp = ZAkm(p,n] (2 . 7)
and*

]kmnp —_ (—I/X)Hk”mp
= (—l/x){x”z%"’””"wLx%’”""jL ...... J. (2.8)

(H*"™"" is the same as J*™™ when b&; is inserted into it in place of a..)

Finally, let us consider the Poincaré gauge transformation in the weak field
approximation. The general transformation that leaves the fields weak is of
the form

% ¥ corresponds to H*™" of 1.
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xt - xt = x"+(((2"ux“—+—e“
0(x) = (@) = [1+(i/2)(Den+ 2 Din(2)) S () (2.9)

(0) (0)
where 0*, (= wemnn*™8™,) and €* are arbitrary infinitesimal constants. Under this

(1)
transformation, the field Awmn transforms as
(1) ) 0) (1) o (1)

l
Akmn’ = Akmn— (UlkAlmn_ W'nAkin

(0)1 (1) (1)
—w nAkmt_ Wim,n. (2 . 10)

§ 3 . Field equations and gauge transformations in a spinor form

Neglecting the super-script (0) and (1) in our approximation, we can immediately
obtain from (I :4.1.12),(I :4.1.13),(I :4.2.2)and(1 : 4.2.3)the spinor equations
which are equivalent to the field equations (2.4) and (2.5). And we can, in a similar
way, get from (2.7) the corresponding three spinor equations.

First of all, we see that eq. (2.4) is equivalent to the following two spinor equations :

45,V A @B +V 6 w{(2bs— bs) X # B —(2bs+ bs) X574 €}
+6VAB{(b1+6b6) A —(bi—6b2) A*} =0 (3.1)

and

36V * u WP 26V 4 O
—V G E((2bs— bs) X 4 CD — (2by+ bs) X P4 €Y =0, (3.2)

where V 45 = 0" 4 50k.
Next, we find out from (2.5) the following two identities :

V afWecpr—V G(EXCD)A' ¢ Vi@ =0 (3.3)
and
VX a6 —2V a7 Opu+3V 4 = 0. (3.4)

And also, from (2.7) we get the following four spinor equations :

VE (A(% E ey = Wasco, (3.5)
7 EF E -
VEF(% as+4V (A(f)EB) 4P as, (3.6)
VEGUmacrs +Vasemé+Vwema = — X4 oo (3.7
4 (4) ()
and
o EF i = 24, (3.8)

(A)
where (f) Fasc and 8 £ 4 are irreducible spinors of the spinor equivalent to the Lorentz

)
gauge field Aimn, defined just like ¥ rasc and @£4 of 64scpEr.
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Finally, let us consider the gauge transformation (2.10). This can be rewritten in
spinor form as follows :

_ . -
(f)EA = (f —(1/3)VErAts (3.9
and
(g Easc = Y Fasc—V £ dsc, (3.10)

where A4p is the irreducible spinor of the spinor equivalent to wgm.

84 . Dyad formalism

In actually performing calculations it is convenient to introduce in spinor space S,
a basis &' = (&, &%) = (0%, ¢*) (called a “dyad”) satisfying the normalization
conditions

CaAé’bA = Eas, CaAé’aB = &as, (4.1)

where €., plays the same role for the dyad components of spinors as €4z does for
spinors.

In our approximation considered in section 2 we use the following concrete represen-
tations for a dyad &%, and 045 :

&A= 8 i, of = (1, 0), 4 = (0, 1) (4.2)
and
S L L)
0 —1 1 0
2 . -1/2 3 — -1/2
s =2 {z' 0]’ Tar=2 {o —1] (4.3)

Then the spinors £ AB, (}{),{Bco, Yanco, Qas, X4 5cp are represented in terms of their

dyad components Em X)M’ U, Ou, X :

Qoo = Po, 200-1 =

(A) (4) ( (4) A7 () (4)
0000 — 0011 = 2 0111 — 3
(21&) Kf) }{, Ay (}i/f) (}{,) ’ (% @’
1000 = 1'110 = 6 1111 =— 7
(}40) }40 }4& (}40) > () @ (4) @”

@00 = @o, @01 = @1, @11 = @z,

%000 = %, %001 = g[ji’ %011 = qu, %111 = ws, w.llll == q&’
X000 = Xo, Xooo = Xl, Xoou = Xz, X100 = Xs, Xoio = X4,
Xotu = X5, Xi1oo = Xo, Xiion = X7, Xi''n = Xs |

,and also V 45 in terms of
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Vo= D= 2‘”2(80+ (93),

Vii= 4= 2—1/2(50'—83),
Vo = oF = 2-1/2(81—162),
Vie= 6= 2‘”2(8;+ 262) (4.4)

All the spinor equations obtained in a previous section are, using these representations,
at once rewritten in terms of the dyad components. Then taking into account the
invariance of the system of equations under SL (2, C)-transformations, we find that
their equations are resolved into three parts, one of which is invariant and the
remaining two are related to each other by a g.-transformation (which is defined in
the next section).

§5. Change of spin frame*
Let us consider the SL (2, C)-transformations of a dyad &* = (o*, ¢*) :

?aA = gabé"bA (51)

VIR
A c d )
where a, b, ¢ and d are complex numbers satisfying det(ga.,) = ad —bc = 1.

It is well-known that any elements of SL (2, C) group can be factorized as a product
of the three typical elements

gl<z>=[i I L N T ).

or

where z is a complex parameter.
a1(2), g:(z) and gs(z) have the following interpretation :

gi(z)--ee Null rotation around #*,
g 2)eeeeee Boost in the #“-»n* plane and spatial rotation in the m*“-m™** plane,
ga(2)eeee- Null rotation around #»*,

where ¢*, n*, m" and m** are members of a null-tetrad z,”. In particular, g.(exp.
[i¢/2]) -transformation may be better understood as a spatial ¢-rotation in terms of a
pair of real, orthogonal unit space-like vectors ¢* and b definded from »* and m™**
by

a# — 2—1/2(m.“+m*ﬂ)
b* = — 1277 (m* — m**). (5.2)

In fact, when the representations (4.2) and (4.3) are adopted, ¢* and " are represented
by @* = (0,1, 0, 0) and * = (0, 0, 1, 0), so that the above transformation is interpreted

* Throughout this paper we use the same notations as those of Ref.5).
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as a ¢-rotation about x3-axis.

By making use of the typical transformations g:(z) ~ gs(z), we also compose for later
use an important transformation g- .

gr = gs(Dgn(—1)gs(1) (5.3)
by which each components of a null-tetrad z,” transform like
Y/ n#, m* - _m*#, n* - p*

By using the representations (4.2) and (4.3) for the above expressions, we find that
this transformation corresponds to r-rotation in the x'-x® plane.
It is covenient to note that the dyad components Bm (%M, U, Ou, Xu and the

operators D, 4, §, §* transform under the g.-transformation as

P2 @, 12—, Vo2 P, h & — s,

e e —g, Gl a2 -0,
U2, 0,2 0, D2 —0; Xo2 X,
X e —X7, XzT—’Xs, st—Xs, X4T—"X4,

and
D24 5§e —6%

where the subscribt (A) has been omitted.

Finally, we consider the space inversion transformation. This transformation is
definded by

(&) = P° ., (5.4)
with
a._ [0 -1
P b — [l 0] ’

where p is a projection operator by which any spinor in spin space S; is projected into
the conjugate space S,*.
Noticing that the basis &r 45 transforms under this trasformation as

p((,&mAB) == énB.ASnm, <5.5)

we can obtain the transformation property of a null-tetrad z»", i.e

.y

p(zm#) = Sngny, (56)
where
0 0 0 1
0 —1 0
Snn = 0 0 -1 0
1 0 0
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And also, we see that the spinor 5 45 transforms like

D( @ A.B) = ?( §0m5mAB) = ¢m*ﬁ(§mAB)
(A) (A) (A)
= (f) AB — (f) mEAB,

and therefore

4 * * * *
Pm= 37, — @27, — @ o ).
(A) (<f) ’ (f) oo (% )

In the same way, we obtain for the spinor (}{f) A BCD

(A) (A) (A A) (A)

6 . Search for a “null field” in PGT

In this section we search for the possibility of existence of a “null field” in PGT. To
do so, we investigate the plane wave solutions which may give the typical ones of such
a null field. Consequently, we start with the assumption that all the fields depend only

on one spatial coordinate z* and time x°.

First of all, we consider the equations (3.1) ~ (3.4). It is easy to see that they can

[— * * * * * * * *
M ((%77 ¢6, !«5! (:‘4&)4 y (%35(%2v (¢1 s !&0 )'

35

be rewritten in terms of the dyad components ¥, @u, Xu, A and their complex

conjugates as follows :

g DO, = gz ADy*

g DO, = g dDo*

@D = g AU *

§@D¥; = mdqfl*

D{2Ag1 @1+ g:0:*) +3(0: o+ 0. T*)} = 0
H2(g 01+ 3:0.*) =3 Tot 0 B>*)} = 0
DQO\+3¥,—2X*) = —4Xo*
A2 0 -3¢ +2X.*) = DXs*

D(gi Xe*+ 3. X2) = 0

A pXe*+ g1 X2) =0

DXo* = — AW,
4Xs* = — DY,
X1 = Of+ Oi*

9 Xs = —gsQo— g ¥\

N Xs = gsQ2— g ¥s

Xt = -0+ ¥

9( Xa— X*)— (g1~ 2= g ) (L= &*) = 0
g5(Xa+ X*) + (g1 + g2 — g ) (¥t %) = 0
A = U— X,*,

(6.
(6.1b)
(6.
(6.
(6.3
(6.
(6.
(6.

[y
[
~—

) [N N
o TN

o~ o~
(o2 =D
S22 B~
o T o

S L 2L 2 20

—
(@]
[op}
o5
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where we put

g1 = 2(2bs— bs),

g2 = —2(3b2+2b3+ b5),
gs = —2(2bs+2bs+ bs),
9s = 8(bi+ b3),

gs = —4(b5+12b6).

From these equations we find at once the d’Alembert equations :

(=g [ JOn =0 (M=0,1,2)
(9= [T =0(m=1,2 3)
(9*—) [ Xu =0. (M = (2, 6)

From them we see that in the case where ¢* # g%, i #+ ¢5°, g« = 0 and g5 + 0, O (M
=0,1,2), &, &, &, X, and X; are all independent and satisfy the d’Alembert equation.
However, &, ¥, Xo and X do not satisfy the d’Alembert equation even in that case.
This means that the spinors @uscp and X4 5cp themselves can not represent any
physical fields, but only the bispinor @45 may represent a massless field with spin 1,
These facts force us to put ¢.* = ¢.* (+ g;°). Because the spinors @usco and X4 5o
could then become merely supplementary ones, i.e., some of their components may
depend upon the components of @4z, and others may be indifinite or zero. In the
meantime, we find also from the equations under cosideration that @, and @, satisfy

40y = 0, DO, = 0. (6.1ab)’

These equations show that @, is an arbitrary function of x°+ z°, and that @, is that of
x2°—x% On the other hand, we see also that @; must be a definite function of both x°
+x°% and x°—2* if it does not vanish. However, such a field stands in our way to our
purpose. Fortunately we easily find that @, can indeed be eliminated* if we put either
[I]on= —grand g« = 0, 0r[11] g = ¢g» and gs = 0. From now on, we study exclusively
these two cases. Before going forward, we remark here the following two proposi-
tions :
(1) The equations under consideration are invariant under the g--transformation, so
that it is enough to consider only a plane wave solution propagating in the positive
direction along the x?® axis.
(2) Inbothcases [ 1] and [1I] , the field equations under consideration are invariant
under the (extra) gauge transformations :

Xo = Xo+ F(2°+ 2°), X = Xi+ L*(2°+2°),
QIXB = @ Xs— ¢ L(x°+ x%), ngs = @ Xs— @M (x°—2%)

* Since we are considering the special case of plane wave solutions, constant fields are
excluded.
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X7 = X7+ M*(2°—2%), Xs = Xo+ H(2°—2%),
T, = U+ G(2°+ 2°), U = U+ L(x°+ 2%,
0 = U+ M(2°— 2%, ¥, = U+ K(x°— 2%,

with others being kept invariant, where (F, G, L) and (K, HM) are arbitrary functions
of x°+x* and x°— x?, respectively.

We shall, by the proposition (1), assume that all the fields are functions of x°—2x®
only, and then, on account of (2), choose the functions H and K so that the fields Xz and
¥, will vanish. Then we have at once the following result in each case of [ 1] and

[II] . (neglecting constant fields)

“®, and any one of ¥, X; and X7 are only independent and arbitrary functions
of x°— 23 and all the others are zero.” (6.11)

This gives the following ones for the dyad components of energy-momentum tensor
(I :4.1.10) of Lorentz gauge field : *

“(g)s =+ 0, and all the other components are zero”

This result shows that the field represented by (6.11) is “null”®. The energy density
of the null field is given by

(Z;OO = (1/2)<%C)8 = —2[(¢*~95") 9] O* D, (6.12)

no matter which one of ¥;, X5 and X7 we choose as an independent field. Here it should
be remarked that the energy density (6.12) does not contain explicitly any one of ¥5,
Xs and X7, and therefore one independent field of them is non-physical. It may be
natural to remove such a non-physical field from the theory. Fortunately, we can carry
it out by the extra gauge transformations (2). We choose an arbitrary function M such
that the field X7 is eliminated. Then, only the field @, becomes independent, and ¥; and
Xs are given in terms of @; by

U= @, and Xs = —[(g2—93)/01] D2 (6.13)

Incidentally, a plane wave solution propagating in the negative direction of the x*
axis can be obtained at once by the g.-transformation of all the above results. And it
is easy to verify that we can take them together with the above results as a general
solution of the field equations under consideration.

We are now in a position to consider the equations (3.5) ~ (3.8), together with

(3.9) and (3.10). It should be noticed that the field equations to be satisfied by Axm»
or @m and (%M are originally of second order, so that if and only if the plane waves

* If we start with the assumption that all the fields are functions of x°+ x® only, we have the
result that

“(é{)o + 0, and all the other components are zero.”
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propagating in the right and left directions along the x® axis are represented by the
same ”"potential” function (generally, a linear combination of Axms Or B and (%M),

the potential function will satisfy the d’Alembert equation. Accordingly, we must
consider here a general case where there are right- and left-moving plane waves, and
assume that the fields Bm and (L&)M are functions of 2° and x®. Then from (3.5) ~ (3.8)

we obtain the following equations :

D(Ys+ g2) = =20, (6.14a)
D((% *—(f)l*) = [(92—5) /1] @, (6.14b)
A( Yo" = @1*) = —20%, (6.15a)

((ﬁs+(gz) = [(92—95) /3:] ©:*, (6.15b)
D(§s—2¢2) = 4o, (6.16)
Dyr= A Y242 g0, (6.17)
D(%e ¢1, (6.18a)
Gr=2g0 Hs=-2¢s (6.18b,c)
Pa=gi=0. (6.19)

Here notice that these equations are invariant under gauge transformations (3.9) and
(3.10) which are now rewritten in dyad form as

Fo= %o o—(1/3)DAs, Fr = (f)l—(l/S)DAz,
Pz = p2+(1/3)dA, $o= (g3+(1/3)4,11,
(go Yro— Do, (ZEI = wl—(2/3~)ml,
(}1{)2 }4&2_(1/3)1)/12’ (}4{)3 - <}40) ’ (}1&)4 - (%4’
‘}{Es = ¥s—(1/3)d%, o= ¥s—(2/3)4A,
=t

where Au(M =0, 1, 2), which are dyad components of Az, are now arbitrary functions
of x° and x* only. Accordingly, we first find from (6.18a,b,c) that we can choose the
parameter A; in such a way that (%1 and (}4&)5, and therefore Lo and & will vanish. And

furthermore, we can see from (6.16) and (6.17) that the parameters A and A, are
chosen so as to realize the relations

Go=d4 =0
(%2‘!‘ (01 =0, ws—z(%z = (. (6.20)

Then (6.14) and (6.15) become
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Do>= —2/30, 4 ¢.* = 2/30,*,
() )

(6.21a.b)
Dg* = —[(9:—95)/30:] D, (6.22a)
A(%z = [(g2—95)/391] @=*. (6.22b)

We require here that right- and left-moving plane waves (represented by @. and @,
respectively) should be represented by the same potential function. Then we conclude
from these equations that [A] when ¢t = — g, ¢« = 0 and 3g:+gs = 0, then we get

x _
@, = (%2 (6.23)

(A4)

and that [B] when ¢i = ¢, ¢s = 0 and 3g1—¢s = 0, then we get

p1* = — @, (6.24)

(A) (A4)

In both cases [A] and [B] we obtain at once from (6.21a,b), as an integrability
condition, the d’Alembert equation

D§01:0,

(A4)

noting that the fields @ and @. are arbitrary functions of only z°+x* and x°—x?
respectively. We thus see that the null field expressed by @. with the energy density
(6.12) is represented by only one independent dyad component & of the irreducible

spinors & 45 and (}10) £ asc of Lorentz gauge field Axn.. Furthermore, noting that & AB 1S

generally equivalent to two real vectors, we can see also that null field is represented
for the cases [A] and [B] , respectively, by

. __9.,091/2 : _ ]
{ V= =320, @it @1 i 91— %), 0),
A*=1(0,0,0,0) (6.25)

and

{ V' =(0,0,0,0)
— 9172 ; —_ * —
AT=270, dg1= @) —(gat £, 0) (6.26)

(A) (A)

Here V* and A” are respectively the irreducible vector and axial-vector components
of the Lorentz gauge field Axn.. Their spinor equivalents Vs and A 4 are defined in
terms of & 45 by

Vais=3(@as+ §03,«{) and Ais= — (@ ais— Pra),
(4) (A) (A) (A)

respectively.
Thus, we find at once (or from (5.7)) that the field satisfying [A] has odd parity
and the field satisfying [B] , even parity.

Finally, it should be remarked that the following condition is to added to make the
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energy density (6.12) positive definite in both cases [A] and [B]

g > 0, i.e., (2623—05) < 0. (627)

§7 . Concluding remark ]

In this paper we have investigated, using a spinor technique, the existence of a "null
tield” in PGT propagating with positive energy in vacuum under the condition C, = C
= (3 = 0. As a result, we found the existence of such a field that has spin-parity 1~ or
1" in accordance with the parameter conditions [A] ¢, = —gs, 3g1+g; = 0 and g=20
or [B] g1 =g, 3g1—¢s = 0 and gs = 0. Here it should be noticed that the additional
restricting ¢ > 0 is required for both cases to make the energy density positive
definite.
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Appendix : The matrix equivalent to a symmetric energy-momentum tensor 7"

T*" > Taipép = XA cCept+AEA C €D

XA cCBp = XME(M)A' cep = erﬂ?mABUnéD

— (22 %2+ x4) X1+ x3 — Xs— X7 2% xe
X1+ X3 21/2X0+X4 21/2st — X5+ X7
Xmn = (1/2) 1/2 1/2
— X5— X7 2% xs —2 %0+ x4 X1— X3
2126 — X5+ X7 Xi— X3 225, — x4
(A1)
where

X0 = 27"%(0+ xs), x = i(xn+ x),
X2 = 27" (e + x6), xs = i(xs+ xs),
Xs = 2 X4, X5 = X3~ Xs,
% =12""(— %), X1 = 1—x,
xs = 127 Y% (x0— xs).
Incidentally, when 7i#*™ is substituted for 7°*”, then we obtain for the energy density

7*00
(F)

UZ)“" = (1/2)((;)0%— 2(;)4+(%s) (A.2)

because of Air) = 0.
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