Notes on metrics and counting functions on Bⁿ

Dedicated to Professor Kenji Nakagawa on his 70th birthday

Shigeyasu Kamiya

Department of Mechanical Science Okayama University of Science 1-1 Ridai-cho Okayama 700 Japan (Received September 30, 1988)

0. Introduction and preliminaries. Let C be the field of the complex numbers. Let $V = V^{1,n}(C)$ $(n \ge 1)$ denote the vector space C^{n+1} , together with the unitary structure defined by the Hermitian form

$$\Phi(z^*, w^*) = -\overline{z_0^*}w_0^* + \sum_{k=1}^n \overline{z_k^*}w_k^*,$$

where $z^* = (z_0^*, z_1^*, ..., z_n^*)$ and $w^* = (w_0^*, w_1^*, ..., w_n^*)$ in V. An automorphism g of V will be called a unitary transformation. $(g \text{ must be linear and } \Phi(g(z^*), g(w^*))$ $= \Phi(z^*, w^*)$ for all $z^*, w^* \in V$.) We denote the group of all unitary transformations by U(1, n; C).

Let $V_0 = \{z^* \in V | \mathcal{O}(z^*, z^*) = 0\}$ and $V_- = \{z^* \in V | \mathcal{O}(z^*, z^*) < 0\}$. Obviously V_0 and V_- are invariant under U(1, n; C). Let $\pi(V)$ be the projective space obtained from V. This is defined, as usual, by using the equivalence relation in $V - \{0\} : u^* \sim v^*$ if there exists $\lambda \in C - \{0\}$ such that $u^* = \lambda v^*$. Let $\pi: V - \{0\} \to \pi(V)$ denote the projection map. We define : $H^n(C) = \pi(V_-)$. Let $\overline{H^n(C)}$ denote the closure of $H^n(C)$ in the projective space $\pi(V)$. An element $g \in U(1, n; C)$ operates in $\pi(V)$, leaving $\overline{H^n(C)}$ invariant. If $(z_0^*, z_1^*, ..., z_n^*) \in V_-$, the condition $-|z_0^*|^2 + \sum_{k=1}^n |z_k^*|^2 < 0$ implies that $z_0^* \neq 0$. Therefore we may define a set of coordinates $z = (z_1, z_2, ..., z_n)$ in $H^n(C)$ by $z_k(\pi(z^*)) = z_k^* z_0^{*-1}$. In this way $H^n(C)$ becomes identified with the complex unit ball $B^n = B^n(C) = \{z = (z_1, z_2, ..., z_n) \in C^n | \|z\|^2 = \sum_{k=1}^n |z_k|^2 < 1\}$. A unitary transformation is regarded as a transformation operating on $\overline{B^n}$. We use the same symbol U(1, n; C) to denote the group of all these transformations. Throughout this paper G will denote a discrete subgroup of U(1, n; C). We assume that the stabilizer G_0 of 0 consists only of the identity.

In this paper we shall show the properties of metrics on B^n in Section 1 and discuss a counting function n(r, z) in Section 2.

1. Metrics d, δ and δ_{α} . Let $d(\cdot)$ be the distance which is induced from the metric

$$g_{ij}(z) = \delta_{ij}(1-\|z\|^2)^{-1} + \overline{z_i}z_i(1-\|z\|^2)^{-2}$$

where $z = (z_1, z_2, ..., z_n) \in B^n$. We recall that d(z, w) is expressed as

$$d(z, w) = \cosh^{-1} \left[| \Phi(z^*, w^*)| \{ \Phi(z^*, z^*) \Phi(w^*, w^*) \}^{-1/2} \right].$$

where $z^* \in \pi^{-1}(z)$ and $w^* \in \pi^{-1}(w)$. Set

$$\delta(z, w) = [1 - \{ \varphi(z^*, z^*) \varphi(w^*, w^*) \} | \varphi(z^*, w^*)|^{-2}]^{1/2}$$

for $z, w \in B^n$ (see [3, p. 180]).

Proposition 1. 1. Let z and w be points in B^n .

- (a) $\delta(z, w) = \tanh d(z, w)$.
- (b) $\delta(g(z), g(w)) = \delta(z, w)$ for any element $g \in U(1, n; C)$.
- (c) $d(z, w) = (1/2) \log (1 + \delta(z, w)) (1 \delta(z, w))^{-1}$.
- (d) $d(z, w) \ge \delta(z, w)$.

Proof. (a) It is seen that

$$\begin{aligned} \tanh^2 d(z, \ w) &= 1 - \mathrm{sech}^2 \, d(z, \ w) \\ &= 1 - [\{ \boldsymbol{\varPhi}(z^*, \ z^*) \boldsymbol{\varPhi}(w^*, \ w^*) \}^{-1/2} | \boldsymbol{\varPhi}(z^*, \ w^*) |]^{-2} \\ &= 1 - [\{ \boldsymbol{\varPhi}(z^*, \ z^*) \boldsymbol{\varPhi}(w^*, \ w^*) \} | \boldsymbol{\varPhi}(z^*, \ w^*) |^{-2}] \\ &= \delta^2(z, \ w). \end{aligned}$$

Thus $\delta(z, w) = \tanh d(z, w)$.

- (b) This follows from (a) and the invariance of d under U(1, n; C).
- (c) This is immediate.
- (d) By (a), $\delta(z, w) = \tanh d(z, w) \le d(z, w)$.

Proposition 1. 2. The function δ is a distance function on B^n .

Proof. By (a) in Proposition 1. 1,

$$\delta(z, w) \ge 0$$
 and $\delta(z, w) = 0 \rightleftharpoons z = w$; $\delta(z, w) = \delta(w, z)$.

Therefore we have only to prove the triangle inequality. Let x, y and z be points in B^n . Using (a) in Proposition 1. 1 and the addition theorem on tanh, i. e.

$$\tanh\{d(x, y) + d(y, z)\} = \{\tanh d(x, y) + \tanh d(y, z)\}\$$

 $\{1 + \tanh d(x, y) \cdot \tanh d(y, z)\}^{-1},$

we see that

$$\delta(x, y) + \delta(y, z) = \tanh d(x, y) + \tanh d(y, z)$$

$$= \tanh\{d(x, y) + d(y, z)\}\{1 + \tanh d(x, y) \cdot \tanh d(y, z)\}$$

$$\geq \tanh d(x, z) = \delta(x, z). \blacksquare$$

Set

$$\delta_{\alpha}(z, w) = [1 - \{ \Phi(z^*, z^*) \Phi(w^*, w^*) | \Phi(z^*, w^*) |^{-2} \}^{\alpha}]^{1/2}$$

and let

$$d_{\alpha} = (1/2) \log (1 + \delta_{\alpha})(1 - \delta_{\alpha})^{-1}$$
.

It is easy to see that $\delta_1 = \delta$ and $d_1 = d$.

Proposition 1. 3.

- (a) The functions δ_{α} and d_{α} are increasing functions of $\alpha > 0$.
- (b) $\delta_{\alpha} = \tanh d_{\alpha}$.
- (c) $\operatorname{sech} d_{\alpha} = \operatorname{sech}^{\alpha} d$.
- (d) If $\alpha \in (0, 1)$, then d_{α} is a distance function on B^{n} .

Proof. (a) This is immediate.

(b) We see that

$$\tanh d_{\alpha} = \tanh\{(1/2) \log (1 + \delta_{\alpha})(1 - \delta_{\alpha})^{-1}\} = \delta_{\alpha}.$$

(c) The equality (a) in Proposition 1. 1 yields

$$\operatorname{sech}^{2} d_{\alpha} = 1 - \tanh^{2} d_{\alpha} = (1 - \delta^{2})^{\alpha} = (1 - \tanh^{2} d)^{\alpha}$$

= $\operatorname{sech}^{2\alpha} d$.

(d) We have only to prove the triangle inequality. Since U(1, n; C) is transitive on B^n , it is sufficient to show that

$$d_{\alpha}(z, w) \le d_{\alpha}(z, 0) + d_{\alpha}(w, 0) \quad \text{for } z, w \in B^{n}. \tag{1}$$

Set $t_1 = \delta_{\alpha}(z, 0)$, $t_2 = \delta_{\alpha}(w, 0)$ and $t_3 = \delta_{\alpha}(z, w)$. Then (1) is equivalent to the following inequality:

$$(1+t_3)(1-t_3)^{-1} \le (1+t_1)(1-t_1)^{-1}(1+t_2)(1-t_2)^{-1}. \tag{2}$$

By (2), we obtain

$$t_3^2 \leq \{(t_1 + t_2)(1 + t_1t_2)^{-1}\}^2$$

From this it follows that

$$(1-t_3^2) \ge 1 - \{(t_1+t_2)(1+t_1t_2)^{-1}\}^2$$

= $(1-t_1^2)(1-t_2^2)(1+t_1t_2)^{-2}$. (3)

We note that

$$1 - \delta_{\alpha}(z, w)^{2} = (1 - \delta(z, w)^{2})^{\alpha}. \tag{4}$$

By using (3) and (4), we have

$$1 - \delta(z, w)^2 \ge (1 - \delta(z, 0)^2)(1 - \delta(w, 0)^2)(1 + t_1 t_2)^{-2/\alpha}$$

This implies that

$$\Phi(z^*, z^*)\Phi(w^*, w^*)|\Phi(z^*, w^*)|^{-2} \ge \Phi(z^*, z^*)\Phi(w^*, w^*)(1+t_1t_2)^{-2/\alpha}$$

for $z^* = (1, z_1, z_2, ..., z_n) \in \pi^{-1}(z)$ and $w^* = (1, w_1, w_2, ..., w_n) \in \pi^{-1}(w)$. Therefore we have only to prove that

$$|\mathcal{D}(z^*, w^*)| \le (1 + t_1 t_2)^{1/\alpha}.$$
 (5)

We can show that if $\alpha \in (0, 1)$, then the inequality (5) is true. In fact,

$$(1+t_1t_2)^{1/\alpha} \geq 1+(1/\alpha)t_1t_2$$

$$\geq 1+(1/\alpha)[\{1-(1-\|z\|^2)^{\alpha}\}\{1-(1-\|w\|^2)^{\alpha}\}]^{1/2}$$

$$\geq 1+(1/\alpha)\{1-(1-\alpha\|z\|^2)\}^{1/2}\{1-(1-\alpha\|w\|^2)\}^{1/2}$$

$$= 1+\|z\|\|w\| \geq |\mathcal{O}(z^*, w^*)|.$$

Thus our proof is complete.

Proposition 1. 4.

$$\delta(z, w) \le (\|z\| + \|w\|)(1 + \|z\|\|w\|)^{-1}$$
 for $z, w \in B^n$.

To prove Proposition 1. 4, we need a lemma.

Lemma 1. 5. If $0 \le r < 1$, then a function $f(x) = (r+x)(1+rx)^{-1}$ is increasing in $x \ge 0$.

Proof of Proposition 1. 4. By (b) in Proposition 1. 1, we may assume that z = (r, 0, ..., 0) and $w = (w_1, w_2, ..., w_n)$, where $0 \le r < 1$. Let $z^* = (1, r, 0, ..., 0) \in \pi^{-1}(z)$ and $w^* = (1, w_1, w_2, ..., w_n) \in \pi^{-1}(w)$. It follows from Lemma 1. 5 that

$$\begin{split} \delta(z, \ w)^2 &= 1 - (1 - r^2)(1 - \|w\|^2)|1 - rw_1|^{-2} \\ &\leq 1 - (1 - r^2)(1 - |w_1|^2)|1 - rw_1|^{-2} \\ &= |r - w_1|^2|1 - rw_1|^{-2} \\ &\leq (r + |w_1|)^2(1 + r|w_1|)^{-2} \\ &\leq (r + \|w\|)^2(1 + r\|w\|)^{-2}. \blacksquare \end{split}$$

Proposition 1.6. Let g be an element of U(1, n; C). For $z, w \in B^n$

$$||g(z)|| \le (||z|| + ||g(0)||)(1 + ||z||||g(0)||)^{-1}.$$

Proof. From (a) in Proposition 1. 1 it follows that

$$||g(0)|| = \delta(0, q(0)) = \delta(q^{-1}(0), 0) = ||q^{-1}(0)||$$

By using this equality and Proposition 1. 4, we have

$$\begin{split} \|g(z)\| &= \delta(0, g(z)) \\ &= \delta(g^{-1}(0), z) \\ &\leq (\|z\| + \|g^{-1}(0)\|)(1 + \|z\|\|g^{-1}(0)\|)^{-1} \\ &\leq (\|z\| + \|g(0)\|)(1 + \|z\|\|g(0)\|)^{-1}. \blacksquare \end{split}$$

3. Counting function n(r, z). Let $n(r, z) = \#\{g \in G | \|g(z)\| < r\}$.

Theorem 2. 1. If ||z|| < r < 1, then

$$n\left(\frac{r-\|z\|}{1-r\|z\|}, 0\right) \le n(r, z) \le n\left(\frac{r+\|z\|}{1+r\|z\|}, 0\right).$$

Proof. Proposition 1. 6 implies that

$$\{g \in G | \|g(z)\| < r\} \supset \{g \in G | \|g(0)\| < (r - \|z\|)(1 - r\|z\|)^{-1}\}$$

for ||z|| < r < 1. If ||g(0)|| < r, then

$$||g(z)|| \le (||z|| + ||g(0)||)(1 + ||z|||g(0)||)^{-1} \le (r + ||z||)(1 + r||z||)^{-1}$$

Therefore we have our desired inequalities.

Let D_0 be the Dirichlet polyhedron for G centered at 0. We note that D_0 is expressed as

$$D_0 = \{ z \in B^n | \|g_k(z)\| > \|z\| \text{ for all } g_k \text{ in } G - \{\text{identity}\} \}.$$

Let dV be the volume element which is induced from the metric $g_{i\bar{j}}$. It is easy to see that $dV(z) = (i/2)^n (1-\|z\|^2)^{-(n+1)} dz_1 \wedge d\bar{z}_1 \wedge ... \wedge dz_n \wedge d\bar{z}_n$ for $z = (z_1, ..., z_n) \in B^n$. We use vol(A) for the volume of A measured by dV.

Theorem 2. 2. Suppose that the volume of D_0 is finite. Let $a \in D_0$ and $||a|| < \rho < 1$. There exists r_0 such that the following inequality is satisfied for $r_0 \le r \le 1$.

$$A(1-r)^{-n} \le n(r,a) \le B(1-r)^{-n}$$

where A is a constant, which depends only on ρ and B is a numerical constant.

Proof. Let g_0 , g_1 , ... be the complete list of elements in G. In virtue of [3, Proposition 4. 1], we have only to prove that

$$A(1-r)^{-n} \leq n(r,a).$$

We choose r_0 such that $\rho < r_0 < 1$. Let F_0 be the part of D_0 which lies outside of $\|z\|$ $= r_0$, where we take $1 - r_0$ so small that the volume of F_0 is less than ε . Let F_k be the image of F_0 under $g_k \in G$ and put $F = \bigcup_{k \geq 0} F_k$. Denote $F \cap \{z | \|z\| < r\}$ by F(r), where $r_0 < r < 1$. Then

$$vol(F(r)) = \int_{F_0} n(r, z) dV(z)$$

$$\leq constant \cdot (1-r)^{-n} vol(F_0)$$

$$\leq constant \cdot \varepsilon (1-r)^{-n}. \tag{6}$$

Put $H_0 = D_0 - F_0$ and let $\{H_k\}$ be its image under G and $H = \bigcup_{k \ge 0} H_k$. Let $H(r) = H \cap \{z \mid ||z|| < r < 1\}$. It is seen that $F(r) \cup H(r) = \{z \mid ||z|| < r\}$ and $F(r) \cap H(r) = \phi$.

Therefore

$$vol(F(r)) + vol(H(r)) = vol(\{z | ||z|| < r\})$$

$$\geq constant \cdot (1 - r)^{-n}. \tag{7}$$

It follows from (6) and (7) that

$$vol(H(r)) \ge constant \cdot (1-r)^{-n} - constant \cdot \varepsilon (1-r)^{-n}.$$
 (8)

Let r_0^* be the δ -diameter of H_0 and set $r_1 = (r + r_0^*)(1 + rr_0^*)^{-1}$. Using [3, Proposition 2. 1], we see that, if $H_k \cap \{z | \|z\| < r\} \neq \phi$, then H_k is included in $\{z | \|z\| < r_1\}$. Hence H(r) is contained in $\bigcup_{k \geq 0} H_k$, where

$$H_{k} \subset \{z \mid \|z\| < r_{1}\}. \tag{9}$$

Since $a \in D_0 \cap \{z | ||z|| < \rho\}$, the number of $\{H_k\}$ satisfying (9) is less than $n(a, r_1)$. Therefore we have

$$vol(H(r)) \le n(r_1, a)vol(H_0). \tag{10}$$

By (8) and (10),

$$n(r_1, a) \geq constant \cdot (1-r)^{-n} (vol(H_0))^{-1}$$
.

Noting that $(1-r_1)(1+r^*r_0^*)^{-1}=1-r$, we obtain

$$n(r_1, a) \ge A(1-r_1)^{-n}$$
.

Writing r instead of r_1 , we have

$$n(r, a) \ge A(1-r)^{-n}$$
 for $r_0 \le r < 1$.

Thus our proof is complete.

References

- 1) J. Burbea: On metrics and distortion theorems, Ann. Math. Studies 100, Princeton Univ. Press, (1981), 65—92.
- 2) S. S. Chen and L. Greenberg: Hyperbolic spaces, Contributions to Analysis, Academic Press, (1974), 49-87.
- 3) S. Kamiya: On subgroups of convergence or divergence type of U(1, n; C), Math. J. Okayama Univ. vol. 26 (1984), 179—191.
- 4) M. Tsuji: Potential theory in modern function theory, Maruzen, (1959).