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ABSTRACT

We investigate the algebra of generalized quaternionic unitary spinors (GQUSs)
which are two-component generalized quaternionic objects subjected to U(2; H 2
transformation, where H (,, is a set of generalized quaternions whose imaginary
units i, j, and k have the relations iz=—1, j2=—2, ij=—ji=k and
1 = + 1. We investigate the case of A = — 1 for which the isomorphism U(2;
H ;) = SO (3, 2) or anti-de Sitter group holds. Furthermore, in this case, we
discuss a simple connection between GQUSs and a time-like geodesic in anti-de

Sitter space-time.

1. INTRODUCTION

Since Dirac introduced the spinors to the relativistic quantum mechanical
equations for electrons”, many physicists studied the spinor analysis and their
applications to physics”?. Kugo and Townsend, to apply to the supersymmetry
theory, extended the real and complex spinor algebra to the quaternionic spinor
algebra?®.

Kugo and Townsend found the isomorphism SO (5, 1) = SL(2, H) as well as well
known isomorphisms SO (2, 1) =SL(2, R) and SO(3, 1) = SL(2, C), where we
have the real numbers R, the complex numbers C and the ordinary quaternions H
which have the positive difinite norms. Furthermore, they found the isomor-
phisms SO(5) = U(2; H) and SO (4,1) = U1, 1;H) as well as the isomorphisms
SO(3) = SU(2) and SO(2, 1)= SU(1, 1)¥, respectively. Thus, the vectors in
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representation spaces of SL(2;H), U(2;H) and U(1, 1; H) are the spinors in the
5 + 1-dimensional Minkowski space-time, the 5-dimensional Euclidian space and
the 4 + 1.dimensional Minkowski space-time, respectively. Particularly, since the
group SO (4, 1) is sometimes called de Sitter ( dS') group, we shall call the U,
1; H)-spinors dS-spinors.

Resently, in the theory of confiniment of quarks and gluons, anti-de Sitter (
AdS ) space-time rather than dS space-time has been called attention, where the
quarks and gluons move inside a spherical bag with AdS metric®, Furthermore,
Dullemond, Rijken and van Beveren suggested the connection between QCD and
SO(3, 2) which is sometimes called AdS group via spontaneous symmetry
breaking of SO (4, 2) symmetry of QCD Lagrangian to SO(3, 2) symmetry®.

From the above facts, we are interested in the study of the spinors in the 3 +
2-dimensional Mjnkowski space-time or AdS-spinors rather than dS-spinors.
However, by Kugo and Townsend’s extension of the spinors, AdS-spinors cannot
be derived.

In this paper, we investigate the AdS-spinors. Here, instead of ordinary
quaternions H, we use generalized quaternions H;,” which have the signature
(+ + + %) of the square norms defined by A of H ,, where

A==1 (1-1)
and we shall describe U(2:H () -spinors or generalized quaternionic  unitary
spinors  (CQUSs). If A = + 1, then GQUSs become the spinors in 5-dimensional
Euclidian space, which are made clear by Kugo and Townsend. However, if
A = — 1, GQUSs become the AdS-spinors. By GQUSs, we may not only express
the spinors in 5-dimensional Euclidian space but also in 3 + 2-dimensional

Minkowski space-time.

2. ALGEBRA OF 2-DIMENSIONAL GENERALIZED QUATERNIONIC
MATRICES
We define an element of generalized quaternions H ) by
9= G+ iq + jg + kg, 9, @1, &, ER (2-1a)
and its quaternion conjugate by
9 =q — iq — jg — kq,, (2-1b)

where i, j and k are the quaternion imaginary units which have the relations ;
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= -1, Ji= -2, ij= —Jji=k, (2-2)
and A is defined by (1-1). We must note that generally pg+¢gp and E = ?11;
for €H ;). In addition, we denote the real part of ¢ € H ., by Re(q), that is,
Re(q)=Re(q'):%(q+¢i), g<H (2-3)
Note that Re(gp) = Re(pq) for p, ¢ € H,,..
Furthermore, we denote the square norm of g < H ) by N(q), that is, for ¢
of (2-1a) or (2-1b)
N@=N@)=qq=qgq=q>+q¢°+ >+ 1€ R.  (2-4)
The square norms N of H (v have an impotant property as follows ;
N(pg)= N (p)N (q), P, ¢ € H . (2-5)
A 2-dimensional generalized quaternionic vector (2-GQV) is a two-component
object ;
b =(g0=(P) P gSH,, (2-6)

where A =1, 2. For two 2-GQVs é, x and r €EH ,,, we define the following
rules ;
¢+ x= (¢t 22, ré = (rgs) + ¢r = (gur). (2-7)
A 2-dimensional generalized quaternionic matrix (2-GQM) is a four-component

quaternionic object ;
— —(a b _
M— (MAB) _(C d), a, b, c, d EH(A). (2 8)

For two 2-GQMs M, N and r € H (), we define the following rules;
M+N:(MAB+NAB), rM:(rMAB)iMr:(MABr). (2—9)
Furthermore, for two 2-GQVs ¢, x and two 2-GQMs M, N, the products are

defined as follows ;

$*x = dax 1 EH ,, (2-10a)
M¢ = (Mysgs) ;a 2-GQV, (2-10b)
dx* = (baxs) ;a 2-GQM, (2-10c)
MN = (M,cN¢) ;a 2-GQM, (2-104d)

where the symbol *+ indicates the quaternion hermitian conjugate ;
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- _ p
¢t=(p q) for ¢ ———( ), p, g < H,, (2-11a)
q

a c a b
Mt=| _ _ | for M= ,a b ¢, d € H,,. (2-11b)
b d c. d
In addition, for two 2-GQVs &, x and two 2-GQMs M, N, we may easily prove
the following equations;
(Mg)* = ¢*M+, (px*)t = xb* (MN)* = N*M". (2-12)
Lemma 1:For a 2-GQM M = (g 2), a, b, c, d = H ,, if there exsist an

inverse 2-GQM M-! which statisfies the relation
1 0

M-M=MM1!=1= s (2-13)
0 1

then the M~! can be written as follows;
1 (N(d)&—c_btf N(b)c_—&bﬁ)
Mi=——+ ,
detM \N(¢)b—dca  N(a)d—bac
detM = N (ad) + N (bc) —2Re (a bd ¢) € R. (2-15)
Then, this 2-GQM M is called regular.

(2—14)

The proof of this lemma can be given by a direct compution of M™'M or
MM-'. In addition, we may easily prove the following expression;
(MN)' = N'M™' (2-16)
for two regular 2-GQMs M and N.

3. GENERALIZED QUATERNIONIC UNITARY SPINORS
A generalized quaternionic unitary spinor (GQUS) is a 2-GQV which trans-
forms as follows;
& — Ug, (3-1)
where U is a 2-dimensional generalized® quaternionic unitary matrix (2-GQUM)
which is a regular 2-GQM statisfing the condition
UtU=U0U+*=1or Ut =U"" (3-2)
Using lemma 1 and (3-2), any 2-GQUMs can be written in one of the following

two forms;
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a b

U:( _ >, a, b,d <H,,, (3-3 a)
—dba/N(a) d

N(a) =N({d) +0, N(a) + N(b) =1,

or

a b

U= _ ), a, b, c€H,,, (3-3b)
¢c —cabd

N(a) =0, N(b) =N(e) =1
Since, from (3-3a) or (3-3b ), a 2-GQUM has three quarternions satisfying but
also two conditions, a 2-GQUM has ten independent real parameters. Thus, U (2 ;
H ,,) consisting of all 2-GQUMs forms a ten-parameter group.
The quantity
&*n = &am for two GQUSs & and 7 (3-4)
is an invariant generalized quaternion under the U(2;H ,) transformation.
Note here that, if we put n=2¢& in (3-4), then &£*& is a real number.
Particularly, if
&£ =0 for a non-zero GQUS ¢, (3-5)
then & is called nu// if and only if A = — 1.
A GQM E is called GQUS of valence [1, 1] ([1, 1]-GQUS), if it transforms
under the U(2;H ,,) transformation similar to a product of two GQUSs & and

7 ; &n*, that is,

E"UEU—l, UEU(Z,H[“) (3_6>
Lemma 2:1If a [1, 1]-GQUS ® is a hermitian ;
0 = 0, (3-7)

then UBU-! for U€ U(2;H ,,) is also a hermitian.
Proof : From (2-12c), (3-2) and (3-7), (UBU ') =(UBU*)* = UBU* =
ueu-.
The quantity
Re(trE) = Re(E,a) for a [1. 1]-GQUSs = (3-8)
is an invariant real number under the U(2: H (1) transformation, since Re (trE)

I Re[tr(UEU_I)] - Re(UABEBcU_ICA) = Re(U_ICAUAgagc) = Re[tr(U_l
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UE)] = Re(trE) for UE U(2; H ).
Lemma 3:If a [1, 1]1-GQUS @ is hermitian; ® = ©*, then
tr@ = O,4 (3-9)
is an invariant real number under the U(2;H (;)) transformation.

The proof of this lemma is obvious since the diagonal components of @ ; 0y,
and ©,,, are both real numbers. However, we must note that tr2 for a general
[1, 1]-GQUS E is not an invariant quantity under the U(2;H ;) transformation,
because of noncommutativity of E,; and E...

We shall close this section with a follwing definition. We denote the trace free
part of a hermitian [1, 1]-GQUS © by:®:, that is,

:0: =0 —%(tr@)l. (3-10)

4. VECTORS IN 5-DIMENSIONAL EUCLIDIAN SPACE AND 3 + 2-
DIMENSIONAL MINKOWSKI SPACE-TIME
Let us consider a hermitian trace free [1, 1]-GQUS;V =:V:. Then, V can be
written as follows;
V = v*E,, v*E R, (4-1)
where a =1, 2, 3, 4, 5 and

TTEN o) TP V2\: o) T Y2\o0 <)

E4=_1_(0 _j> ES:L(O _k> (4—2)
V2\j o) V2\p 0
are five hermitian trace free [1, 1]-GQUSs which satisfy the following relations;
E.E, + E,E, = gal, (4-3)
g2 = diag(1, 1, 1, 2, 1,) (4-4)

From lemma 2 and lemma 3, E, transforms under the U(2 ;H (;,) transforma-
tion as follows;

E.— UE,U'=E,L°*, UEU(2;H ), L% € R. (4-5)
Substituting UE,U™! = E,L°, for E, in (4-3), we may obtain for L% the
following relations;

Zeal L% = gav. (4-6)
The expression (4-6) is the condition for an element L%, of SO(4 +2a,1—21).
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Thus, we see that the U(2; H (;,) transformation induces the SO(4 + 1, 1 — 1)

transformation ;

U@;H ;) 02— L2, L%, €S04+ a,1—2) (4-7)
for V of (4-1), since, from (4-5), we have V = v2E, — UVU! = p2UE,U! =
L*,v°E,. In the case of A = —1,SO(4 + 1,1 — 1) or SO(3, 2) is called anti-de

Sitter group, and then we shall call GQUSs AdS-spinors.

In consequence, v in V of (4-1) are the components of a vector V in
5-dimensional Euclidian space for A = —1 or 3 + 2-dimensional Minkowski
space-time for A = —1. Namely, we may identify a trace free hermitian [1,
1]-GQUS with a vector in the 5-dimensional Euclidian space or the 3 + 2-
dimensional Minkowski space-time. Therefore, we shall call the trace free
hermitian [1, 1]-GQUSs 5-vectors and E, of (4-2) the basis vectors.

The inner product < , > for two 5-vectors can be written as follows;

<A, B> = Re[tr(AB)] for two 5-vectors A and B, (4-8)
since, from (4-3),
<Ea, E»> = Reltr(E;E,)] = gas (4-9)
for two basis vectors E, and E,. Of course, for (4-8), we may easily prove the
following relations ;

(A, B> = B, A, <uA, B> = u<A, B>, <A + B, O = <A, C + (B, O

(4-10)
for 4 € R and three 5-vectors A, B, C.
The quantity
X =:&¢&*: for a non-zero GQUS & (4-11a)
is a 5-vector ;if we write X as
X = x?E,, x*< R, (4-11b)
then x® can be written as follows;
x'=V2 (£10€20t &0l t+ Al 12622+ A6 13623),
x2=y2 [£10€a1— &€t A(E12823— E13622) ],
P=—(N(61) = N(&2)), (4-11c)

xt=V2 (E10€22— E12&20 1+ 13821 — E11623),
x5=y2 (E10€23—E13€r0+ E11E22— E12€21),
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where

&a = &ao T i&a t jEno + k&ps. (4-11d)
The square length of this 5-vector X is given as follows

X, X> = gurts® = 1(£*4)* > 0 (4-12)

Here, note that we have <X, X> = 0 if and only if & is a null AdS-spinor.

5. SIMPLE CONNECTION BETWEEN TIME-LIKE GEODESIC IN ANTI-de
SITTER SPACE-TIME AND NULL ANTI-de SITTER SPINORS
The AdS space-time H,* is a hyperboloid in 3 + 2-dimensional Minkowski
space-time R,°, that is,
()2 4+ ()2 + ()2 — ()2 — (252 = — 19, x*ER. (5-1 a)
If we denete these quintuples {x®} by a 5-vector
' X = x°E,, (5-2)
then the hyperboloid condition (5-1a) can be written as
X, X> = -1 (5-1b)
Let us consider a curve X, through a point P in H,%, where X, have a real

parameter ¢. If V is a tangent vector of X, at the point P, then V is geven by

V =dX,/d¢ | ». (5-3)
Note that, from (5-1b) and (5-3), V satisfies the condition
<V, Xp>:O, (5_4)

where X, is a 5-vector indicating the point P. Then, the equation for the

geodesic passing through the point P in H,* can be written as follows;

((d/d#)? — <V, V>]X, = 0. (5-5)
The time-like solution of (5-5) is
X; = Xpcost + Vsint for <V, V> = — 1. (5-6)

This solution is physically important, since the massive particles in H;* move
along the geodesic (5-6).
Now, we shall investigate a relation between the time-like geodesic and

AdS-spinors. Let us consider the following two null AdS-spinors.

. (1) ! () (5-7)
== , Kk=—F= , —
77\ ; 77\,
Then, we may define the following two null 5-vectors

I=vet =00y, K=nxt=:1xx*: (5-8)
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A linear combination of I and K;

is a 5-vector which indicates a point in H,*, since <E,, E> = — 1. If we take this

Xr as a primary point P € H,*, then the 5-vector

V= {[41) Esg‘l, H) €UE@2;H.,), (5-10a)
where EJ) satisfies the condition
(
U E4 = E4U, ( 5 _lOb)
(4) (4)
is a time-like tangent vector at the point P, since <V, V> = <E,, E;> = — 1 and

<V, Xp> =<Eq, E> = 0. Substituting (5-9) and (5-10a) into (5-6), and using
(5-10b) and (5-9), we obtain
X: = E,cost + y) Esg‘lsint
= (Ig) exp(it/Z)Xpexp(—it/2)H‘1

zgexp(it/Z)%(I—K)exp(—it/2)8‘1 (5-11)

Similarly to (5-8) and (5-9), if we put

It:LtL:-, Kt:xtx:_ (5‘12)
and
1
X, :ﬁ(lt—Kz), (5—13)

then, from (5-11), (5-7) and (2-2 ), we may obtain
h = H[a cos(t/2) + xsin(t/2)] (5-14)
w = H)[—L sin(¢/2) + x cos(¢/2)]
Here, of caurse, ¢, and x, are both null AdS-spinors. Differentiating these
solutions (5-14) with respect to the parameter f we obtain the following
simultaneous differential equations ;
de/dt = w/2 (5-15)
dw/dt = —4,/2.
Let us denote the primary values the primary values of ¢, and x, in (5-15) by
tp and xp, respectively, that is,
tp = b | o, Xp = 3 | 1. (5-16)
If we impose on these on these ¢ and x» the conditions

and
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wtep =0, a7 xp =0 (5-17a)
Re(LP+Kp) =0 ( 5 _17b)
then we may obtain
X, = Xpcost + Vsint, (5-18)
where
X, =~ + .
t_ﬁ(ltlg — KiK; ) (5—19a)
and
1
XP:ﬁ(lP1P+_KPpr+>, V=7l2—(tpltp++xptp+), (5—19b)

Using the conditions (5-17a) and (5-17b), and from (5-19), <X, Xp> = —1, <
V, V> = —1 and <V, Xp> = 0, we find that X; is a 5-vector indicating a point P
€ H,* and V is a time-like tangent vector at the point P. Comparing (5-18) with
(5-6), we find that the curve X, of (5-18) is a time-like geodesic in H;*. Thus,
we may see that the simultaneous differential equations (5-15) relate the

time-like geodesic in H,* to the null AdS-spinors.
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