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On the base of the invariance of a system under the Poincaré gauge
transformations, five identities are obtained according to Nother’s theorem.
Using some of these identities and field equations, a different approach to the

Poincaré gauge theory by means of a spinor formalism is presented.

§ 1. Introduction

Since the gauge theory of gravity was first formulated by Utiyama” in 1956 on
an invariant property of system under the local Lorentz transformations, the
gauge theory on space-time symmetries has been investigated by many
authors.?™'?

Poincaré gauge theory on the base of a symmetry of system under the local
Poincaré transformations ( hereafter called Poincaré gauge transformations ) was
first studied by Kibble.? He introduced two kinds of gauge fields, i.€., the
translation ¢ ,* and the Lorentz A ,.,” gauge fields, to keep a system invariant
under the Poincaré gauge transformations. However, he assumed only the
Lagrangian linear in the Lorentz gauge field strength by analogy with Einstein
gravity. This type Lagrangian does not contain any kinetic terms for the Lorentz
gauge field. Accordingly, the Lorentz gauge field was not a propagating field in
his theory.

Against it, Hayashi® proposed the most general Lagrangian quadratic or less in

the first derivatives of ¢ ” and A ,,”, and suggested the existence of propagat-



28 Shin-ich NAKARIK]

ing massive as well as massless gauge fields.

In this paper we shall adopt the Lagrangian proposed by Hayashi, and develop
an argument in terms of spinors instead of usual tensors.

A  spinor technique adopted here has been growing up with general
relativity,'9~19 an4 especially used successfully to the study of gravitational
radiation.!”~20)

Accordingly, it seems that a spinor formalism is more useful for an argument
of propagating massless gauge fields. (Under this formalism we will investigate
the possible existence of massless Lorentz gauge fields bropagating with positive
energy in linear field approximation in the forthcoming paper, )

In § 2 we recapitulate Kibble-Hayashi’s method, and deduce five identities
according to Noether’s theorem.?V § 3 g devoted to preparations for spinor
approach. In § 4 we present a spinor formalism to Poincaré gauge theory. The

last section is devoted to concluding remark.

§ 2. Preliminaries
As preparations to later section, we review briefly the Poincaré gauge theory

in this section.

2.1. Action we consider a set of matter fields
Q= {g*/A=1 2. .. , N } with the Lagrangian density

Lu =Ly (g, gx). (gx = 9q/ox%)
The action [ d*xLy is assumed to be invariant under Poincaré group.

Let us now postulate the invariance of the action under Poincaré gauge
transformations which are defined by replacing ten parameters in ordinary
Poincaré transformations by arbitrary functions of the coordinates : *

o =& (x) (2. 1. 1)

9G(2) = (i/2) @ 4, (x) S* g(x) (2. 1. 2)
Here ¢*(x) and o wm(x) are ten arbitrary infinitesimal functions of the
coordinates, and the Skm are six infinitesimal generators of the Lorentz group,
satisfying the commutation relations

[Skm)Snp]:z-(ﬂknsmp_'_”mﬁSkn_”kpsmn_”mnskp)' (2. 1. 3)
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) We use the Greek indices for the coordinate indices and the Latin
indices, for the local Lorentz indices. The Latin indices are raised or
lowered with the flat-space metric 7m = diag. (1, —1, -1, —1).

In order to keep the action invariant, the derivative g,x must be replaced by the
“covariant” one Dkq in the original Lagrangian density Ly. Here Dxq is defined

by introducing the two gauge fields, that is, the translational gauge field

¢ ,* and the Lorentz gauge field A pm,( = — A i) » DAMeElY
D,q=0b" (g, + (i/2Awm S™a (2. 1. 4)
with bkﬂ:()‘kﬂ+ckﬂ_

The field b ,*, which is defined in terms of ¢ ,*, is called the vier-bein or tetrad
field.
The Poincaré gauge-invariant action is given by
I, = J d*x Lu(q, Dxa), (2. 1. 5)
where Lw = bLu(q, D) with b = — det(b ).
The field b ,, is the inverse of b™, satisfying
by b =0,", by b™=6:" (2. 1., 6)
The two field strengths € pmx and F ., for the translation and Lorentz gauge
fields are obtained by calculating the commutator (D,,D,—D,D 2 a. We

easily find

(DmDn—D,,Dm)q:(i/Z)Fk,mnSk1q+6km,,Dkq (2. 1. 7)
where® € i = C tom T 2A & G » (2. 1. 8)
F oy = 2(Aimr T Ak A7) b0 00 (2. 1. 9)

with Coomn=2b jr » b BT (2. 1. 10
A=A s b " (2. 1. 1D

» We adopt the standard convension that round brackets around
indicies denote that the symmetric part is being taken and square
brackets, the antisymmetric part.

The Poincaré gauge-invariant action for the gauge fields is determined in terms
of the two field strenghs & xum F pnp DY
[o=J dx bla 6 " +B"C e+ y 6 6t
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+ @ Awmnp AXm0P 4 @ Bimpp BmoP 4 @& Cimnp CKM0P

+a4EkmE“'"+aﬁkaG“"‘+aﬁF2+aF) (2. 1. 12
where a, a, g, yvand g (/1 =1, 2, - - . , 6) are constant parameters (only five
of six parameters a; are independent ), and T¢g kmn,  * 0t Aynnp, o -, F
which are the irreducible components of Lorentz (local) 4-tensors € wmn and Fipn,

respectively, are defined by

"G kmn = 6t — (1/3) (pen¥ € — 7 (VG my), (2. 1. 13)
Y€k = € My, (2. 1, 19)
ok = (1/31) sumnp 6 ™, (2. 1. 15)
and
Asmne = (1/6) (Famnp ~ Funmp + Fiomn = Fapin + Fopn — Fomio)
(2. 1. 16)
Banne = (1/4) (Dimnp + Dipemn + Dopim + Damip), (2. 1. 17)
Canne = (1/2) (Dimap — Dapien) (2. 1. 18)
B =F (4, (2. 1. 19
Gan = Fumy — (1/4) pen F (2. 1. 20)
with
Fm = 7™ Fynmp,
F = pp (2. 1, 22)
and

Dinno = Fimnp — (1/2) (Fanzp mo + Frot vo = Foa7 o
" Faotrmn + (1/6) (7 san mp — 7 47 ) F (2. 1, 23
Here &, is a completely antisymmetric Lorentz tensor
and 92 =71, &123 = — 1.

When making use of the identity®
— R — (2/3) TckmnTckmn _ (2/3) kaVCk + (3/2) ACkAck

+ 67 (266™ VG,), (2. 1. 24)
then the above action (2. 1. 12) will be rewritten in more useful form
Ic =/ dx {abR + Le + Lp + (2abbm+ V€ m), u} (2. 1. 25)
where
Lo = bLs =p(qrg,,,mE mn T &6 V6 + grg gk (2. 1. 26)
with

a=a+(2/3)a = B—1(2/3)a C=qy+ (3/2) a,
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and
Le = bLe = b (@ AunnpA*™™ + @BimopB "™ + @ Cannp €™
+ @,Exn E*™ + 085G G*™ + g F?). (2. 1. 27
Combining Iy of (2.1.5) and I of (2.1.25), we get the Poincaré gauge-invariant

action for the whole system:

I=1y+1Ig
= f dix {L + (2abb ™" 6 ), 4} (2. 1. 28)
with
L =bL=Ly+abR+ Le + Lp. (2. 1.29

2.2. Field equations From the action 1 of (2.1.28), we get the three field
equations by the variational principle.
One of them is that for a matter field q, which is determined with the concrete
expression for Lw.

© R is a Riemann scalar curvature defined by the metric guv= b ub*v,

and TCunn, etc., are the components of Cimn just defined like as TE wmn»

etc.,.

Another one is that for the field bp :
2aG¥™ = — T*" (2. 2. 1)
where G*" is an Einstein tensor G o (= K a5 — (1/2) g .5 R) in local form, and
T.m is a local form® of the energy-momentum tensor Tuv for a whole system

except for the Einstein gravity, namely

Tkm:b}(# b™y T* = 7‘(M)km+ ﬂg)km+ﬂp)km (2. 2. 2) **)
with
oLy
T(M)km:aD:quqf”kmLMv (2 2 3)
Te) k™ = VI + Kool iy m— ¥ L ) (2. 2. 4)
and
7‘(F)km — qunkaqnm _ 771(mLF' ( 2 . 2 ] 5 )

Incidentally, the conservation law of energy-momentum can be then expressed in
the form

(az*+7*) u=0, (2. 2. 6)

x
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where
T = T
oG
o Tang, 0 v-one.

*»  The transposition of any tensor with coordinate indices (called world
tensor ) into the local form (called Lorentz tensor ) is generally perfor-
med by using the field p P

**¥  Twm g essentially symmetric, because of the Lorentz gauge invarian-

ce of system.

Here G is a part of bR, not containing the second derivatives of guv.
The remainder is that for the Lorentz gauge field Ay :
Vo H¥™™ 4 gk prmnoe 4r,, H¥me = _ Gkmn (2. 2. 7)
where S* = (St p uy iq 4 spin-angular momentum tensor

for a whole system :

Skmﬂ:S(M)kmﬂ+S(g)kmﬂ+S<F)kmﬂ (2. 2. 8)
with
Si = A =i, 2) by Bt am (2. 2. 9)
Seepmu = OLE _p uyiumin, (2. 2. 10)
and
Sipyeme — aLF — A M} U RITMPAM _ Irmrnp g
(F) aAkm/l bn bp (H A ry H A ry), (2 2 11)

and in terms of it, the conservation law of spin-angular momentum can be
described in the form

b S*™)  =9. (2. 2, 12)
Here 7mn  fmne  ang their “covariant” derivatives Vo™ and V, Hkmoe 46

defined as follows :

Ikmn:Za%i‘ﬁ =4c,Tg*rimn + 40277“[’”"6"1
mn

—(2/3)636‘“""“6,:, (2. 2. 13)
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Hkmnpzzﬁzllallqkmn.b_{_élaszm[nP]+4asckmnp

+ a, (Ekn”mp + Emp”kn — Ekp”mn —_ Emn”kp)
+ aﬁ(Gknﬂmp _+_ Gmp”kn _ ka”mn _ Gmn”kp)
+2a5 (" 5™ — p*Py™) F (2. 2. 14)

and

k —
v n] mn — I'kmn,n —_ Akm[rmn — Amm[krn — Anm[kmr,

(2. 2. 15)
Vo H M = pkmne gk Ffrmee _ gm Frins
— A" pHYmP — 4P H kmor (2. 2. 16)
with
Dimn = i bo* = (1/2) (C iy + C ok + C i)
= — i (2. 2. 17
The “covariant” derivative V, is generally defined by
Veqd=5b,"V,q _
Vea=gq , —(/2)4,,,S™q. (2. 2. 18)
Then the “covariant” derivative D, of (2. 1. 4) is related to the V,, using the
relation Aunn = Kimn — Jinn - (2. 2. 19
D = Vg + (i/2) KnaS™q (2. 2. 20
with

K in = K oy b ,% = (1/2) (G oun + € e + € wmi)
= — Kuun. (2. 2. 21)
2.3. Identities The action I of (2. 1. 28) is invariant under the Poincaré
gauge transformations, even if the divergence term is neglected. From this
invariance of the action I, the following identities are obtained in accordance with

Noether’s theorem : 2%

Vo Frimme o [k - Frrmne 4 prm o ke — () (2. 3. 1)

Va6 Yk = K™ = — Ftom”, (2. 3. 2)

VpR*kme = () (2. 3. 3)

RHimn_— 0 (2. 3. 4)
and

FloapH™P — Fm JHoP = Fr o mEriek — frk prenpm (2. 3. 5)

where it should be noticed that the Poincaré gauge invariance is preserved, even
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if any of Lw, abR, L and Ly is substituted for L in the action I, and that +
symbol on the right-above of F, 6 and R stands for the right duals of them, e.
£,

Frimne — (1/2 1) F*mrs g™, etc.,.

* Tt should be remarked that the “covariant” derivatives of # um, &mnp

and their associates, i.e., Va7m, Vr&mnp, €tc., are all zero.

Substituting (2.2.19) for Aumn in Fumnp, Fimnp is resolved like
Fimnp = Rumnp + Fimnp (K) (2. 3. 6)
with
Ry =2 (Dirs + A" ) b * 8, (2. 3. 7)
and
Fannp(K) = Vo Kimp — VpKimn + Kirn K'mp — Kiep K'mn.
(2. 3.8

§ 3. Spinor Approach
In this section, we shall obtain the expressions (2. 2. 1), (2.2.7),(2.3. 1) and
(2. 3. 8) written out in terms of spinors. The next some subsections are devoted

to preparations to do so.

3.1. Fundamental spinor We consider the so-called spinor as a vector ( called
spin-vector ) in spinor space S, which is a two-dimensional linear vector space
over the field of complex numbers with an antisymmetric inner product, and with
a conjugate space S,* associated with it. An any order spin-tensor is then defined
in the same way as the ordinary tensor.

An n-th order spin-tensor is also called a spinor of n-th rank, simply a spinor
in the case that there is no danger to be confused.

We denote the contravariant component of a spin-vector u in any frame of
reference in S, by #“(A= 0, 1), and the corresponding of the conjugate u* by
uh (zzl =0 s i). Then their covariant components # 4, and u , are respectively
got by

#ua=u? &p and u}l=ubejg/{, (3. 1. 1)

making use of the fundamental spinors & 45 and & 45, which can be selected to
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EAB:( 0 1>=8A'é. (3. 1. 2)
—1 0

Conversely, when the covariant components % 4 and u 3 are known, their

be

contravariant components u? and u A gare introduced by
ut=e*Pug and uA:eABulg (3. 1. 3)
where ¢ 2 and e AB are the inverse of € as and & a5
respectively :
eABeBC:eAC:—ecA’—‘~6CA (3. 1. 4)
and the same one with dotted indices.

We shall often use the following relations involving the fudamental spinor :

EaBECD + &caésp + &pcéap — 0, (3. 1. 5)
&agnc + &péca + &c&as = 0, (3. 1. 6)
ﬂAB—ﬂBA:ﬂEEEAB (3. 1. 7)

where &, and 7as may be arbitrary spinors of any rank.
Lastly, it should be noted that the norm of any spinor of odd rank is zero,
because of the antisymmetry of the fundamental spinor. For example,
Enh = eas&tE = ErEn = 0.
3.2 spinor equivalents of tensors The correspondence between tensors and
spinors is obtained by making use of a mixed quantity o” as = b, o k .5, where
o* ap i algebraically determined by the following equations :
O_kAB:o_kBA (3. 2. 1)
o‘kABo""AC+0‘mA30'kAc:77km€Bc- (3. 2. 2)
The spinor equivalent of any tensor is @ quantity which has a dotted and an
undotted spinor index for each tensor index. For example, the spinor represent-
ing the tensor F . (= — F,) (which is assumed to be real, and hereafter we
shall treat only with real tensors ) is given by
F apep=F o 0" a8 o't (3. 2. 3)
Conversely, the tensor F, is expressed in terms of its spinor equivalent F ipcp
FuVZG“ABduéDFABcD. (3. 2. 4)
The spinor F agtp has the symmetry

F apep = — F coan (3. 2. 5)
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because of the antisymmetric property of the tensor F .. and as a result, we
obtain the identity

Fieeo = (1/2) (F 40 — Fesin) + (1/2) (Fgiy — ¢Din).
Applying (3.1.7) to two terms in the right-hand side, this identity can be also

rewritten
FABaD=e;;¢¢BD+eBD¢A¢, (3. 2. 6)
Where
Pan =D Fpfy=— g pe,, _ V2) F ity = ¢ .
(3. 2, 7)

of ¢ 45 gives
¢ s =[¢ 451" = (1/2) [F 2F51% = (1/2) F ag”,
because of the reality of F « and the Hermitian broperty (3. 2. 1) of o"*“iB.
We thus see that the antisymmetric tensor F « 1S equivalent to a symmetric

Spinor ¢ . Incidentally, it is well-known that a symmetric spinor with two

We are now in a position to consider the Spinor equivalents® of field Strengths
F mnp and E tonn-
From their definitions, it jg easily known that the fields wnp @nd € ., have the
following Symmetry properties :
kanp:“kanp:*kapm (3. 2. 8)

and

the tensor F im (= B, # b,“F ), we see that the field strength E oy i
equivalent to three kinds of spinors, ¥ ascos X jpep, @ 4B and one complex scalar
A, and the field Strength € knns €quivalent to two types of spinors, ¢ Ascp and
® i5. Here v ascp and @ 4, are completely Symmetric in their a]] indices, and

¥ iscp, in its three indiceg B C D
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complex vector, or real two vectors.
By actually performing calculations, we find out

Vi =—3 (it @ i) (3. 2. 1D
and

Agip=—1(@is— @51 (3. 2. 12)
where V6 45 and * 6 ip are the spinor equivalents of the irreducible components,

V¢, and A€, of 6w and @ s is the complex conjugate of @ as.

* The spinor equivalent of a local tensor is defined by using the
quantity o * ip for o* ap.

In terms of these spinors, the spinor equivalents, F ApcperGH and 6 apepir, Of
F punp and €, are represented by
F apcoiren = { W pppy + @ pu € prt ® pr & BH
Jr1\(£BI~‘5IJH+l=‘BH€DF>} € AC € EG
b {Wae T Pace gy T REEAG
tA*(eipecct EaGECE) €BDEFH
+ X icru € Bp € b T X BpisG € AC € FH (3. 2. 13
and
€ aBcoiF = { ¥ appor T @ aF € B0 T @ ip € BF ) € CE
4 (Ymckt @ri€ac T @rcE AN EDP
(3. 2. 14
where V¥ ipcn, @ ab, X aBCD and ¥ apcp are the complex conjugates of the
corresponding quantities.
3.3 Spin-connection In this subsection, we consider the “covariant” deriva-
tive V, of a spinor.
In such a case that a matter field q is a spin-vector u 4, We Se€ from eq. (2. 2.
18) that
A\ uA:uA’ﬂ+(1/2>) Akm,,O‘kEBO‘mEAMB, (3. 3. 1)
on account of (S*) 4% =ic KEB G
Here, let us put
AAB&‘D,,:Akmu c* ip o "ips (3. 3. 2)

then, because of the antisymmetry 4 em = — ya
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4 ipép, is reduced just like as F ipip in (3. 2. 6):
AAB&‘D;;:EA(}FBD;‘_"-SBDPA&‘#) (3. 3. 3)
with
T oase= (1/2) disFp, (=T ) (3. 3. 4)
and its complex cojugate I' ABy-
We can thus rewrite the expression (3.3.1) as
v, Ua=wuy, , ~TP, up. (3. 3. 5)
On the other hand, using this expression (3. 3. 5), we obtain the similar
expression for V, v 4, where v 4 is a contravariant component of a spinor v :
V,,vA:vA,u+I‘AB,‘vB, (3. 3. 6)
noting the relation
Ve (usvt) = (u, v4), ..
Generally, assuming the Leibniz rule, a similar formula for any spinor is obtained.
Using the formula, it is shown that the “covariant” derivatives, V. € s vV, 0,48
and their associates, are all zero :
V. &ap = & 45, p _PCA#ECB—PCB/;GAC
=T 45 —T gy =0 (3. 3. 7)
and since, noting the relation Vevt =pk gk oy 0,
for a spinor equivalent v 4% of vector v *,
V,viB=V, (p* g ,48) = V, 0¥, 4B L,k V, 0,48
= p 4B .+ P“'l@, v 4 By, A V,v*. o,
therefore
v, o_kAB — o.k/'lB) . +an, o,m/'w + I“:l@# o.ké‘B
+T 8, 5,40 = (3. 3. 8)
and so on.
And also, as a result, we find out again

Vit =V, (6,85 .) =0 (3. 3. 9)

4. Spinor formalism
In this section, we shall find again the various expressions mentioned in section
2 in spinor form.

4.1 Field equations in spinor form First of all, we consider eq.(2. 2. 1).
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According to the procedure given in the previous section, we know that a spinor
equivalent T jz:, of a symmetric tensor T m) is reduced as
T isco = X aésp + A& i € pp, (4. 1. 1)
where
x acep = (1/2) (T pep + T epap) (4. 1. 2)
having the symmetry properties
X ACBD = X CABD = X AéDB = X BDAC (4. 1. 3)
,and
A= (W/DT g5 = )T ", = /DT, (4. 1. 4)

*)

T ymmay not be manifestly symmetric, but essecially must be so,
because of the Lorentz gauge invariance. Accordingly, it should be
understood that T ,, means a symmetric part of it, whenever it has not
a manifest symmetry.

Now, we obtain the following two spinor equations, instead of one tensor
equation (2. 2. 1):
X(G)AéBD = (1/4a) x acsp (4. 1., 5)
and
(G):(1/12a) A. (4. 1. 6)
Here X “ acep and A o together with a completely symmetric spinor ¥ (¢ 45cp,
represent a spinor equivalent R jzipircy of Riemann curvature tensor R e (=
b k,, b™, 6", b?, R mmp ) iD an exactly similar way to (3. 2. 13) without ® 4.
However, it should be remarked that A “ is real unlike A, because of the
additional symmetries of R Emnpy 1.€.,
R kmnp — R npkm
and
R jmnp + R pypm T R ppun = 0.
On the other hand, after the tedious calculation we see that X acsp and A are
written in terms of irreducible spinors as follows :

X Aatep = X  ABD = X atept X acmp (4. 1. 7)
(M) ¢ (F)

)
and
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with
X ) ACBD = (3/2)c, {Varvim +Vervam +Visy DAéiE
+ Vip ¥ gac® + ¥ aser ¥ 0™
+ ¥ aper ¥ ™+ Vs ¥ o
+ ¥ ki ¥ L+
+(3/2) ¢ {Vis(@ep+ @pi) + Ve (@ i+ @ 5a)
+véB(¢AD+¢DA)+VAD(¢éB+¢’Bé>}
+ (1/12) (9¢ +36c +8c) {Vimr@ct T Vs a”
+ ¥ pici @ o° + ¥ pici @ 55 )
+ (1/12) (27c, + 366 —8a) {(Vimr@ ¢t Vv imr e a
+ ¥ k@ o Y oac ¥ s )
—(1/3) e —¢a) {pipeist PipPast AP K
+ @ e @ Bat
—1/3) (9¢+ ) {@oiwwesc T @pPrat @A
+@pcPast s (4. 1. 9)
X (F)A(.:BD:\I’BDEF (@ X"+ @&Xa) +\PACEF<g1XBDEﬁ+g2XEﬁBD)
+ 0 (@ Xafp+taXfpe +0m@Xic’s + & X Fpac)
+ @ ple Xapte + & X ) + @ itla X st a + & X i)
+ g (A — A% (X acep — X apae) + & (A + A*) (acep + X poac)

(4. 1. 10)
A= (9/2)6 (Vi@ + Vip o ™)
U6 e ¥ T g ¥ )
—(1/2) 96 — &) (@ i @ 7 + @ 5 @ FF)
—9a+a) oo™ (4. 1. 11)

A =0,
(F)
and £ acep and m)s) are not determined until a matter field q is concretely fixed.
Here we put
& — 2(2a; — as),
&= —208a+2a + a&),
&= —22a + 2a, + @),
8 — 8(41 + 0/3),

and

g = —4(as + 12a) .
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Next, let us consider eq. (2. 2. 7), which is straightforwardly written out
Veu H ABCDEFGH + K ABI'(LCH H KLCDEFGH __ K éDI;’LCH H KLABEFGH
+(1/2) (I ABCDEF __ I é1)ABEF) =_g ABC.,‘DEF.
Since this equation has a symmetric property just like as 6ABéDEp,<A/Iit can be
decomposed to the following two equations :
8a, VA, @ B 1 126,y A8 @ FH
+ 2V ((2a — @)X AP — (24, 4 g)x BHiG)
T 20 cur” {(2a — a) X ACFH _ (94 4 a;) X FHAG)
T2l in + 30 wi) {(2a — @)X AP _ (24, 4 g) x BHAG)
+ 12V {(4 + 6a)A — (0 — 6a) A"}
~12(0 Y + 30 %) {(a + 6a) A — (4 — 6g)A")
T 6aW B g A+ (96, + 26) @ A7+ (9g, — 2¢,) @ PA = 66 47
(4. 1. 12)
and
602‘7/'11{ o BCDH 34, (o AH + 30 HA)\I,BCDH + 124,y A(BFH\I, CD)FH
+4a, VAT QD) o (g AB 4 5, By g o)
— 2,8 {(2q, — as)XAGCDJ —- (245 + @)X CD>21(';}
T e 30 ) {26 — @)X AP (24, 1 g)x wié)
— 49 45 {(2g, — )X AGH /D) _ (2a5 + @)X D)iuic}
—8 {(@ + 6a)A — (@ — 6a5) A*) " ABCD _ 3e 9 ABCD _ 2(};),21300)
(4. 1. 13"
where (9) ap and ({4[) ABcp are irreducible spinors of (g) ascper, Just defined like as

® ap and ¥ igepin (3. 2. 14) respectively.

*) w (.;H(BC X AGH,”D) — <1/3) {,‘0 (:‘.HBC X AGHD + w ('}HCD X AGHB

+ ¥ (.;HDB X A(';HC}

4.2. Identities in spinor form In this subsection, we shall consider only the
identities (2. 3. 1) and (2. 3. 8), which will be thought of the field equations in
our later treatment. The identities (2. 3. 4) and (2. 3. 5) are trivial, when they
are rewritten in spinor form, and also an identity (2. 3. 2) is automatically
satisfied, making use of the definition (2. 3. 8). And the identity (2. 3. 4) is a

famous Bianchi identity, whose spinor form will be found in a great deal of



42 Shin-ich NAKARIKI

literatures.'> "2
First, let us consider (2. 3. 1), which becomes on account of (2. 3.3) and (2.
3. 6)
v, F+"*(K) + K kL, Frm + K"y F e = (),
Noting the relation
& incpirén = O “AB O "cp 0" EF 07 GH & wmnp
— i(e gp € u € Ab € 06 — € BF € D € AC € B6) (4. 2. 1)
after the lengthy calculations, we shall find out the following two identities, which
are the irreducible components of a spinor equivalent of (2.3.1):
‘I’BCDF 2y AEF(B ¥ o+ (1/2) (@ 2F + 3¢ F )Y mep
- v (BXCD act2y’ (BCXD>H(';A+(1/2>(<P <B+3§D X cpa
— VP + 3/2) (@i P T 30 51 ® cp) T 2 ascp A =0

(4. 2. 2)
and
VGHXBHAG‘*‘?ﬁGHEBX HG +(¢GH+3¢ )XBHAG
— 2V, H @ gy + 39 apen @5
+ 3VAB(11}) ~3(@apt3@m)At Y aeen ¥ 5 = 0.
(4. 2. 3)

Finally, we get four identities from a spinor equivalent of (2. 3. 8), ie,
ZVE(A ¥ iscpy — 2V EraB ¥ EFCD)
+ (@ b+ 3@ i) ¥ EBCD) = 2 (\II(’)ABCD»
(4. 2. 4)
ATE g it — 4 it ¥ 6+ 209 oF 30 5 0) ¥ mit
+ Visl@pe T30 ) TV plenat 3¢ ap)
— (@ a+ 30 aw) (@ e T 3¢ ip) = 4(315)}16313,
(4. 2. 5)
2VEF ¥ irap T 3(@ EF 4 3¢ FE) V¥ EFaB
—9VE (@ i + 39 mi) = 8P ap (4. 2. 6)
and
3VEF (@ i + 39 mi) + (3/2) (@ ir + 30 ki) (@ 5 + 39 ™)
‘ZVfEFGH‘/fEFGH:—M(II})) (4. 2. 7)

where a subscript (K) was adopted by reason of representing the irreducible
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spinors of F jpipipen (K), just defined like as the correspondings of F jgipirin.

5. Concluding remark

A spinor formalism introduces the notion of a null tetrad into a theory in a
remarkably natural way. Accordingly, this approach seems to be useful for a
research on massless gauge fields propagating with positive energy. In forth-

coming paper we shall investigate this possibility.
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Appendix : Identities induced by the Poincaré gauge invariance
Under the Poincaré gauge transformations (2. 1. 1) and (2. 1. 2), two fields
b,* and A ,,* transform as
Ob, " = —w™ b, T E, b,
6Akmp = —-—w”, Anm,, T w nmAkn/z @ g — A &Y, R
From the invariance of an action (2. 1. 28) (neglected the divergence term)
under these transformations, we get the following identical relations, according to
Noether’s theorem :
G/2)[L'], S*q+ (1/2) ([L'],* 6™ — [L']," b ™)
+ [L]F™Am,, — (L] A%, + [L']", u=0, (A, 1)

[L’]q q, u + [L,]uk bkuy u + [Lljyk bkvl v
+[L’:|”k, ) b . vo4 [L/]IemuA s 4 — [L/]kva k> V
- [L':’kml’} v A kmy = 0) (A. 2 )

%{(z’/z)——ail‘#sk’"q-l—(l/z)( OL" pm 0L bk“>+ OL"  pm,,

ﬁbk“, 1% 8bm", 1% aAkm./s 14

oL’

*mAknu—[L']km”}zo' (A. 3)
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. 0L’ «im oL’ my oL’ ky
e Y B )

_OL"  am __OL' o rpem
+8Aknw VA Y aAmnu» #A ny [L ]k ’
9 ( oL’ ):o

al‘u aAkm#v v ’
oL’ oL’

aAkm/I, u+aAkmy» ﬂ:O,

%{[L’]ukbky —[L1* Apmy + a(8* LK, 2 — K*, 1) — 1.} =0,

J {aGL

i oL’ oK"
al’# b,c . u Akmy+2€l

A__
Y P 28"

oK* i« oK*

+Zaa VK, 7g ) 7_aagaa, Agaﬂ’ u}'i’[L,]ukbkA_[L’]kmAkmu

— 4+ a6 K%, «— K%, ,)=0,

9 <a 0K* ..., OK* M)
ox* agua, Ag agua’ xg

1( oL ,a, oL , . (_ 9L oL’
+2{8bk”, /cbk +3bk“, Abk (aAkm/lv /c+aAkm/c. A)Akmu

oK* oK*
+2a ag,,ag“’—i-Zaa a8
dK*
+2aa ayIa( mg"“, 7+2aﬁ7g”, %
— aK/c aB _ _@L anB }_
dagaa’ Ag »Y aaga Kg » vy=0
and
K" . oK* ,, oK*
0gav, g K+ag¢w, Kg A"’agau’ uga/c
o K* u oK* oK*  .i_
+——8g"‘”, Kga +8g“”, Ag #+8g‘“’, #g =0
where L=L"+aK", .
4 0L d <3L'>
[L]a= 0q 0x*\dgq, u/’

(A.

(A.

(A.

. 4)
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, oL’ d ( oL’ >
k— _
[L ]I‘ abk# axu abkﬂ, y )
A 0L 0 ( oL’ >
[L] aAkmu axu aAkmu, v ¥
and
- u_ 0L oL’ N oL’ e
Ty ‘aq’ #Q» u+abk,1, ;bk» v +f—aAkmA, ﬂAkm/lv v ov L

(A. 10)

From (A. 1) we see at once that the field equation for a field & ,” is
essentially symmetric, when another equations are fulfilled :
Putting (L], =0 and (L] =0 in (A, 1),
we find
(L) = (21
with (L] =bs™[L],".
When putting
[L7,"=b by, ™
(L)%™ =Db b,* N*™,
(A. 1) and (A. 2) are rewritten respectively as
DnNk”’"+V6,,N’*’””+][”“k]:0

or (A. 1)
v, N + K*,N™+K",N"+]"™ =0,

and
D.J,* +V6k],,k —6kmp]k'"—ka,,ka'"":0

or (A, 2)

Vel " = Koy " = F oy N = 0.

From these identities we can get the identities (2. 3. 1) ~ (2. 3. 5), noting that
the Poincare gauge invariance is preserved, even if any of abR, Le¢ and Lp is
substituted for L in the action I:Substituting Lr for L’ in (A. 1), we get an
identity (2. 3. 5).
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And, substituting L and Ls¢ for L’ in (A. 2), we get the identities (2. 3. 1)

and (2. 3. 2) resepectively.
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