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Abstract
We discuss the solution of the octoion wave equation and Proca’s equation
using the regular functions of an octonion variable developed before. Also, we

discuss the extention of Proca’s equation having four dimensional internal mass.

1. Introduction

Recently, an attention has been directed to octonions in theoretical
physics in the hope of extending the 3 + 1 space-time frame work of the theory
to 8 dimension to accommodate ever increasing quantum numbers assigned to
elementary particles and fields. As an extension of the application of
quaternions to Maxwell’s equations‘’, and Dirac-Clifford algebras to Dirac
equation, an octonion field equation‘® was discussed in relation to the extra
degree of freedom of octonions to connect the internal symmetry of the elemen-
tary particles and the higher dimensions needed for the unification of physical
forces in the gauge theories.

Giinaydin and Giirsey ¥ formulated the quark structure using split
octonion algebra and others discussed various attempts of unifying all the
physical forces by wusing higher exceptional groups which essentiallir related
to octonions.”’

While in the scheme of unification of all physical forces: the 11 dimensional



156 K. Imaeda, Mari Imaeda, Susumu Ohta and H. Tachibana

Kaluza-Klein theory, octonions played an important role in the derivation of
solutions of Cartan-Schouten-Englart equation‘® |, the torsion tensor on
the S” sphere®. While Diindarer et al.” ‘used the theory of octonion
functions to derive the winding numbers.

Penney ‘® had proposed an octonion wave equation and discussed a special
case of the mass operator by reducing the extra degree of freedom: mass space
to a scalar constant mass. He showed that the octonion wave equation reduces
to a pair of Dirac equations when the 4 extra degree of freedom of mass space
1s reduced to a scalar constant mass and the extra degree of freedom is pos-
tulated to be the internal symmetry of isospin: proton and neutron. Quite
recently, Joshi‘® had discussed the same octonion wave equation as Penney’s.
He showed that an octonion wave function has four dimensional internal space
of mass and the internal symmetry is interpreted as the generation of the four
families of fermions within the quark-lepton symmetry.

On the other hand, the theory of functions of an octonion variable is

developed independently of field equations to deal with the nature of functions
of an octonion variable.”" In the case of quaternions,"" it was shown that
Maxwell’s equations are reduced to the regularity condition for functions of
a biquaternion variable. This made it possible to derive the nature of an elec-
tromagnetic field through the use of the theory of functions of a biquaternion
variable).
Thus, an electromagnetic field is expressed by a regular function of a biqua-
ternion variable and a regular function expresses an electromagnetic field if
a proper initial condition is implemented. Therefore, the theory of functions
is, in some way equivalent to the theory of electromagnetic fields.

As an extension from the quaternions to octonions, we see that the octonion
wave equation proposed by Penney is equivalent to the regularity condition for
function of an octonion variable. In the theory of functions of an octonion
variable, the regular octonion functions which satisfy the regularity condition
satisfy the octonion equation so that a regular function of an octonion variable
represents an octonion wave function and the mathematical theory of functions
becomes essentially equivallent to the physial theory of an octonion wave

function if a proper correspondence between the two theories being established.
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In this paper, we describe the theory of functions of an octonion variable
in relation to the octonion wave equation and to derive the solution of the

octonion wave equation using the theory of functions of a split octonion variable.

2. Octonions and theory of functions of an octonion variable and its extention
to split octonions.

In recent papers, ®® "M

the theory of functions of an octonion variable
and those of a hypercomplex variable of Cayley-Dickson algebras and of
Clifford algebra have been developed and some of the results have been published
in this Bulletin. Therefore, we do not elaborate the theory of functions in
this paper but we quote freely the results to our present purpose in this paper
when we need them. However, we have to extend the theory to split (complex)

octonions. The reason for this is as follows.

The norm of an octonion is a quadratic metric of positive definite
2
2. X7
a=0

The space corresponds to this metric is not Minkowski space but is a Euclid
space. To obtain Minkowskl space as a sub-space, we need to extend the
octonions to split octonions, the units of which is e, (=1, 2, 3, - , 1)
which are related to the octonion units {,(@=1, 2, - , 7) by the following

relations:

1) eq=iiy i=y—1.

As has been done in the case of the theory of quaternion functions , the
complexification of octonions is not a trivial matter in the case of the
function theory as will be shown later. Because the split octonions as in the
case of quaternions, are not a division algebra but contain zero divisors.

This makes a fundamental change in the character of the theory of functions,

though in the algebra zero divisors have to be added.

2—A) The algebra of split octonions.

The multiplication rules for octonion units {, is given by
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(2) id lﬂ=— dﬂ+ edﬂriri iozl.
where ¢4 are the structure constants: totally antisymmetric with respect to
a, g, 6 =1, 2, 3, - , 1)

@) eugr=-+1, for « A 7 =123, 145, 176, 572, 347, 365.
Then, the multiplication rule for e, is obtained from (2) as follows:

4) eqes=0ysticaprey, ba=—€q-

There is no change in other algebraic rules except the introduction of zero
divisors. For example: X=zx,+e,x;, X" =zx,—ex; are zero divisors when

Xo==Ex,, because X X' = Ioz—.r12=0, But neither X nor X* is zero.

2 — B) Functions of a complex (split) octoinion variable and the regularity
condition.

We define a complex octonions Z = ;;edza, 25=Tgt 1y g and X =

';:edxd * T4€R, the real part of the complex octonion be designated as a

“physical octonion”. Then, we define the regularity condition for a function

F (X) of a physical octonion variable X as follows ©

Define a differential octonion operator D by

B D= a;:ed(a/axa)

and let an octonion function F (X) be
7
(6) F(X) = dz:]oeafa(x01 B x'])’

fo are scalar function and € CZ Then, the function F(X) is left D

regular (or right D regular) at X if and only if F(X) satisfies the fol-

lowing equation:
() DF (X) = 0, (F(X) D= 0),
where we define

DF (X) =a§:’[(eaeb)a/axa]fc(xo, Ty oty T7)=0,
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the equation is introduced in eq. (25’) in ref. (1).

3. Octonion wave equation.

The octonion wave equation proposed by Penney 1s a special case of the
regularity condition for functions of an octonion variable given by equation (7).
3 — A) Derivation of the wave equation from the regularity condition.

For the regularity condition we have discussed in ref. (0) and (11}, the
space is an 8 dimensional octonion space, while in the Penney’s octonion wave
equation, the basis space-time is the 3 + 1 space-time. We now derive the
octonion wave equation from the regularity condition by confining the extra
four dimensional subspace into the internal space so that the extra internal
space variables no longer appear in the wave equation but appear, 1instead,
through the internal symmetry or the internal quantum numbers.

Let the regularity condition (7) be written as:

3 7
8) (00t exdrt T ea0) iy o 240 2 0 2=

or

3 7
Q) (D,+D,)P(X,, X,)=0, X1=20e,,xu, X2=Z;eaxa,
n= a=

We assume ®(X,, X,) being a product function of ®,(X;) and @,(Xz)

the one depends only on x, through z, and the other only on z, through z;.®=
®,d,. Also we assume that the function ®,(X;) is a scalar function so that it
commutes with all quantities: e, (¢ = 0, 1, - , 7). Then, we obtain

by the method of separation of the variable, as follows:

(10) (D1+Dz)((p2¢’1):(Dz¢’z>®1+¢2(Dl¢1>:0-

Multiplying (db;'d;!)=d ! from the right of the above equation and using &,
commutes with all quantities, we find

1) (Dy@p) Pz == (Dy®, )P,
Since the both sides of (il depend on different variables so that it should be
equal to a constant: let the constant be put equal to: im:ZZieama, Because the
left-hand side contains only e,(a = 4, 5, - T) anda‘not e, (u = 0,

1, 2, 3), we can equate the left hand side of the above to be equal to im=
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,;EZ tegm,. Thus, we have

(12—1) Dydp=—1imdy,

(12— 2) Dd,=imd,,
The first equation which contains only internal coordinate variables (x,, -
x7;) and determines the constants m, is the eigenvalue equation in the internal
space to determine the internal quantum numbers m,  The second equation
containning only the space-time (external) variables x,, -**, 3 is the equation
used by penney.
3 — B) Derivation of Proca’s equation and its extension.

We derive another form of an octonion wave equation which is called
Proca’s equation in the following.

Let us take a special case of eq. (7):

3
(13) D=DI+DZ’ Dz= ime,u Dl:ZO eua,u’
e

3
D= 2 €u¢ﬂ + e, 9,

#=0

and the octonion wave equation be (in analogy with the quaternion wave equa-

tion of Maxwell’s equations(m)

0 F=D@,

S=DF,

where ¢ , F and S are the potential function, the field function and the
source function, respectively, and are given by the real component functions

as follows:

®=¢0+2+l‘e4¢4 y
5 F=ftig+ie(uytu)

S=ioti+ie,(t+is)

where Q=§ erdr 1S a space vacxtor.

The equations (15 are, given in the space-time vector form as follows:
fo=0¢—divd+mo,,
f=db— grad ;.
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6  g=—curig,
uyg=0,h—mey,

iz_grad¢4_ m_@)

and
19=0, fot+divf—mu,,
1 =0, fotgradfo—curl g—mu ,
£=m;1+curl£,

m ¢
0=divg,
0=80_g+curl£,
0=0,u,—divu+mfy,

Il

Oou—gradustmf

) . . (1)
in the octonion form

The equations (14 and (5 are the Proca’s equation'*
The mass of the field & can be found as follows. Multiply D" from the left
F=DO®

of the second equation of (4, the equation satisfies the following:
19 DDP=(0-m?) d=s,

when S = 0, each components of @ satisfy the same equation as
@ (@Q-m?) ¢,.~0,

The equation (19 shows that m is the mass of the field. This form of
Proca’s equation has been introduced in (13.
The equation (4 can be generalized by extending the scalar mass m to a four
component vector mass: mz};‘: e,m, as described in the following.
3 —C) Extention of the Proc:’s equation to include vector mass.

The equation (13 can be generalized by extending the scalar mass m to a

four dimensional vector mass:
7
(20) m::z eama-
a=4
For this purpose, we extend the differential operator D, @, F, and S to

a general case of octonions which include the units e;, ¢, e,, Then, the equa-

tions can be written as follows: Let
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7 7
Q) D=2 e, ®=2) € Pg,
a=0 a=0

7 7
F:az:-:') e fatiga), S=(12_0 e tatiug),

and the field equations be

2 pod=F,
DF=S,

we obtain similar equations as (16l and (I7) which are Proca’s equation extended

to a general case of octonions.

4. Solutions of the octonion wave equations.

As described in the above sections, the octonion wave equations are closely
related to the regularity condition for functions of an octonion variable:
special cases of the regularity condition. Therefore, the regular functions
which satisfy the regularity condition, if certain constraints are imposed, will
be the solutions of the octonion wave equations.

In the theory of functions of an octonion variable, several methods of
obtainning regular functions are introduced.”” Thus, we apply these methods
together with the ordinary methO(’i to obtain the solutions of the octonion wave
equations as described in the following.

4 —A) A free field case.
(1) Eigenvalue equation

Equation (12— 2) can be written in the Hamiltonian form:

3 7
@ i(o/ox,) P=HD, H=i[}22=1 ekak+a24 eama]

where H is the Hamiltonian of the field.
7

Now we seek a free field solution of the form exp [—ibz Drxy ],
=0

Let us assume that @, be given as follows:
7 - LT
V) q)1=02:o[uaea] exp[—l Z%I)axa— 1§mc-‘rc]

where u; are octonion constants. Inserting ®, of @ in (3, we find po
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should satisfy the following eigenvalue equation:

B 4=1kas=podas | =0,

where p, 1s the eigenvalue, 4 =\kyp— po%s5] 1is defined by the following

determinant

bo b 22 bs my ms Mg mq

b bo ips  i1py —img imy  im; — img

4= p, 13 Do —ip —img —im, imy  ims

&%) Ps —ip, ip po —im;  img —img  imy

My img ims im, bo —ip —ips —ips

ms — im, im; — img i Do ips —ip;

Me —im; —im, ims 1p, —ips Do i p

mr img —ims —im, ips 1P, —ip Do

Now, we can solve the equation (5. Multiplying the following determinant

to 4 : i.e. change all the p,(k = 0, 1, 2, - , 7) to —p, in the first
column of 4 and also do the same to the first row, we obtain another determinant:
A'=1k 55— PoSss| . Then, multiply this determinant 4~ from the right of 4
of ), we find

A= pi=pi=pi—pi-Tmi )
Since A=/, we have
3 7
W Vkas= podas | =+ [ 56— 2 pi=2m; ]! 1=0.

Thus, we have eight eigenvalues for the energy p,:

7
@B po=Ey= kﬁpﬂzmg, four roots,
=1 a=4
3 7
Do=—E¢=— ;}p£+2m§, four roots,
=1 a=4

These eightfold eigenvalues correspond to the positive and negative values of

the energy, spin and isospin, respectively.
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4 — B) Wave functions derived from the regular functions of an octonion
variable
Now, we derive the solution of the wave equation from the regular functions
of an octonion variable using the Fourier integral representation.
From the equation (15 in ref 12, we have a general solution of the equation

of the regularity condition (7) as follows:

1 (= ; i 7
B W= o [ femplai Ctat () JA0)d"E

3
where t i1s a sum of the vector t=g_‘, t,e, in the external space (zxy, -, x3)
— — k=1
7
and the four vector t=2)t,e, in the internal space (x;, -, Z; N
a=4
(%) We put underbar for a space 3 -vector in the Minkowski space and

we write a 4 vector in the internal space by a bold letter. An octonion is
written by a sum of two vectors t and t and a scalar ¢, as T=t,+t+t=1+¢t

which are specific notations used in this paper only.

From eq. 29, A(#) is determined by the initial condition:
B PX)xy=0 = D(x)

as follows. Putting in (§ x,=0, we have

8) a)=(2my[-ferpC+ e, x) Tt

where A(t) satisfies certain constraints.

@ [fivcawniae= finite

Since the right hand side of the above equation, A (t) is the Fourier

transform of @(x). Inverting the integral we find
® Alt)=[-fep[F(z. t)]@@Dd'T,
Now, take A(t) a specific case as:

B Alt)=(2m) AT 5 (1= my)
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where ¢ (x) is the 9 -function. Then, we find from (31):

8 Sx=2m) [ [ expl +i bzt may) Jeapl+i((t-2)+m-x) T4 1)d't,

This is a wave function which satisfies the octonion wave equation (12— 1).

In the above, since m and t do not commute:

(0 expli(tx,t+mxy)]*explitxy,Jexplimz,],

we cannot write the function as a product of two exponential functions, one

depends only on the external variables and the other on the internal variables.

The Fourier integral form of the solution is suitable for the quantization
of the field function (35). The field quantization of the solution of the field
(3 will be dealt with in a future paper.

4 — C) The solution of a generalized Proca’s equation when there is a source.

The equation (14 can be solved using the residues theorem given in section
6 in ref. (). However, in our case, the space contains Minkowski space-time
so that we have to extend the residue theorem to the split octonion variable.

Since split octonions contain zero divisors, the singularity 1s spread
over a seven dimensional hypersurface in the space (z,, z;, -, x;) where Zu
are all real scalar quantites but the norm of a physical octonion X is given

by:

(37) N(X):XX+=x02_—- xlz__...__x72,

So that when T, = £Jrit-+z2 , the product of X and its conjugate
X is a zero divisor.
Thus, when we extend the residues theorem from an octonion variable which

is given in ref (0) as

39 (48n4>-1f[<pmdx><DD<z—x>-1>]=F<Z),

to the complex octonion variable, we need to change the surface of integration

S7 from a closed hypersurface to a surface which encircles the singularity
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surface of the zero divisor N(Z—X)! so that it extends into a split

octonion space.

The procedure is quite similar to the case of extending the residues theorem

of a quaternion variable to that of a complex quaternion variable as illustrated

in ref. (). But the nonassociative nature of octonions makes the derivation

of a field function from residues theorem is a bit complex. Thus, the extenion

of the theory of functions of an octonion variable to that of a complex (split)

octonion variable is needed so that the theory based on the residues theorem

will be dealt with in another paper and will not be ellaborate in this paper.
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