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Abstract

The homo-nuclear interatomic potentials between Dirac-Hartree-Fock-Slater
atoms are calculated within the frame work of the statistical model including ex-
change correlation interaction. Of these, Xe-Xe potential can reproduce rea-
sonably the experimental data of the differential scattering cross section. We
find that a simple screening function expresses these precise potentials analytical-
ly. A Table of the parameters of screening functions is given for the diatomic
systems of atoms from Z=2 to Z=92. A screening function to represent those

potentials is as well proposed for practical use.

1. Introduction

The analysis of the phenomena concerning with low energy atomic collisions
can be estimated by the interatomic potential (IP) through the classical orbital
equation. The low energy atomic collisions, especially in the LSS reduced ener-
gy unit ¢<1, are considered to loose the incident energy of projectiles by nuclear
stopping processes mainly. And the shell effects attributed to the atomic struc-
tures have been observed in this energy range (1, 2, 3]). Then the precise IP is
needed to describe atomic collisions reasonably in that energy region. There have
been two kinds of streams of the investigations for IP: One approach intends to
have the general description of atomic collisions in reduced units for the sake of
practical use. Another intends to have the precise potential in order to explain
the atomic number dependence or the shell effect observed experimentally.

As for the former intention, Firsov derived generally the universal function
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expressing the IP and a reduced length of the diatomic system based on the
Thomas-Fermi statistical model and variational method [4]. Lindhard established
the general theory to describe the atomic collisions, which was called as LSS
theory [5]. On the other hand, as for the latter intention the basic formalism
written by charge density functional [4] had been improved by adding the contribu-
tion of the higher order term, i.e., the exchange term [6, 7, 8] and the exchange
correlation term [9]. Furthermore, the realistic charge densities of the atoms
have been used, e.g., Thomas-Fermi-Dirac (TFD) [6, 7], Hartree-Fock (HF)
(81, Hartree-Fock-Slater ( HFS) (10, 1171, and Dirac-Hartree-Fock-Stater
(DHFS) [1, 12]. There seems, however, no sufficient agreement between calcula-
tions and experiments of differential cross section [1, 12] to exist.

In our previous work, some of IPs were calculated according to the Gordon-
Kim statistical model [9] using DHFS charge density of atoms [13]. We had
pointed out that the oscillation exists in screening functions, which were eval-
uated as the exponents of the power potentials at certain low energy region. Similar
oscillation was reported in other calculations [14, 15], too. In fact these
exponents are very important to explain the oscillatory target dependence of the
measured sputtering yield [16].

In the present work, the IPs have been calculated for the systems of atoms
from Z=2 to Z=92 in the same manner to the previous work. The potentials have
shown not only the oscillation qualitatively but also being precise quantitatively,
because it can reproduce the differential scattering cross section of measured data
reasonably.

Then those potentials have been expressed analytically in a simple screening
function for further applications. The screening function is usually written as
a function of a reduced length, however, the present results recommend not to scale
IPs by a single screening length. This problem of scaling has been discussed by
Biersack et al. theoretically [11] and other authors empirically [17, 18].

The purpose of the present work is to show that our calculation of IPs is
satisfactory and to express each homo-nuclear IP in analytical screening function.
The screening function suggested here has only three parameters and is very

simple for applications.
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2. The interatomic potential
The homo-nuclear IPs are calculated according to the Gordon-Kim statistical
model. The formalism to calculate them is expressed by the sum of four terms; Vu

electrostatic term, Vi kinetic term, V. exchange term, and V.o correlation term

as follows;
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where Z*(r) is the equivalent positive charge of the atom at the distance r from
either nucleus, R the internuclear distance, €cr the correlation interaction [9],
and o(r) of DHFS atom [13]. The shell effect in Z*(r) of DHFS atom is
shown in Fig. 1 in the case of Xe atom. The charge density of the diatomic

system is assumed to be expressed by the superposition of the charge density of two
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Fig. 1 Shell effect of Xe atom are illustrated as Z*-Z* ;. Z* are of
DHFS atom, and Z*.; are of LJ (Lenz-Jensen potential [19]) atom.
Fig. 2 Geometry used in calculating the interaction energy between two atoms
separated by R. The number 1 and 2 denote the locations of the nuclei.
dr is an arbitrarily chosen volume element containing electrons of both

atoms.
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Fig. 3 The potential difference between potential of DHFS
atoms and that of LJ atoms is 1llustrated. The atoms
are Xe.

isolated atoms as illustrated in Fig. 2. Here all of homo-nuclear IPs from
7.=2 to 2=92 are calculated according to Eq. (1). The shell effect appears
also in the IP as is shown in Fig. 3. It seems strange that the quantities
illustrated in Fig. 1 and 3 show the opposite sign, however, the electrostatic

contribution is negative in this range of the internuclear distance [91.

3. Accuracy of the potential calculation

The first purpose of this work is to estimate the accuracy of our potential
calculation. We had already suggested qualitatively that I[Ps show Z oscilla-
tion or shell effect of atoms [16]. The oscillation in the exponents of the power po-
tential at certain low energy region supports the Z oscillation of the sputtering
yield. On the other hand, there are some experiments to indicate the shell-shell
matching in the atomic collisions even in the low energy i'egion {1, 2, 3J. In
this work we calculate the differential scattering cross section using our calculated
potential and orbital equation, in order to check the accuracy of our potential quan-
titatively. The result is compared with experiment [1] for the case of Xe— Xe
collision of 100 Kev as is shown in Fig. 4. The present calculation for the

potential is known to be quantitatively reasonable.
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Fig. 4 The ratio of the differential scattering cross section due to the
present potential to that due to universal LJ potential. The present
results are denoted by open circles with comparision to the measured data
denoted by solid circles. The expermental data are by Loftager et al.
(1] in the case of Xe-Xe of 100 kev. The abscissa is the transfer
energy V't =esin?(0/2), where 6 is the scattering angle in the c.m.
system, ¢ LSS reduced energy.

4. Screening function

The second purpose of this work 1s to express the precise homo-nuclear 1Ps
into some analytical screening function for convenience. The properties of the
screening function itself and its parameters will help us to understand the IPs
more clearly and systematically. We find that the following function can be
one of the best screening functions ¢(R/a)=VWV(R) R/Z* for all IPs calculated
here;

P(x)=exp(— Ax+ Bx'®— Cx?) (7)
where x= R/a 1s the reduced length, a the screening length. This type of po-
tential 1s called as MLJ ( modified Lenz-Jensen) potential hereafter since

it coincides to Lenz-Jensen potential for small x. The fitness of MLJ potential
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to the calculated IPs is shown in Fig. 5. MLJ potential is known to follow well
the numerical IPs. The problem that this function is appropriate or not as the

screening function is reviewed in Appendix.
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Fig. 5 The fitness of MLJ potential to the calculated homo-nuclear IPs
according to Eq. (1). Solid lines are MLJ potentials and asso-
ciated markes are the corresponding numerically calculated ones. The
abscissa is the reduced length x = R /a, where a is the Lindhard
screening length.

Fig. 6  The Z dependence of homo-nuclear screening functions, where the
Lindhard screening length is used. All of these atoms are noble el-
ements in 8th row of the Periodic Table.

The three parameters A, B, and C have been determined by the least square
analysis. In Fig. 6 MLJ potentials for atoms of noble elements (8th row) are
plotted. This Figure tells us that the Lindhard screening length is not appro-
priate to bunch the IPs into a single screening function in this case. Dotted
line denotes Lenz-Jensen potential. In fact three kinds of parameters A, B,
and C for respective IPs for atoms of Z=2 to Z=92 show the different Z
dependences to each other. Roughly speaking, all of three parameters seem to
decrease with increasing atomic number Z. This fact supports that the used
screening length is not appropriate in a strict meaning. This tendency is ex-

pressed in the next relations;



A New Type of the Interatomic Potential 63

A=1.20  zoo

B =0.368 z o (8)

C =0.0566 z70%8

This result recommends us to avoid one scaling in the screening function of
IP as was suggested by Biersack et al. theoretically [11] and empirically [18].

Then we use the following screening function instead of Eq. (7);

8.0

001 1 1 11 1 1.1

10 100
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Fig. 7
Fig. 7 7 dependences of (a, b, ¢) in Eq. (9) for respective homo-nuclear
MLJ potentials are plotted against the atomic number Z. Each solid
line represents the average values determined by the least square analysis,
i.e., the corresponding coefficient of Eq. (8)

J(R) = exp(—aR+ bR —~¢R?) {9
The sets of parameters (a, b, ¢) for respective homo-nuclear IPs are illustrated
in Fig. 7 and tabulated in Table 1 with their relative standard deviation o. The

oscillatory tendency of the parameters of the screening function were reported (14,

15], too.

5. Screening function for practical use

The solid lines in Fig. 7 show the average value of respective parameters of
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MLJ potentials as a function of atomic number Z by excluding the detail oscil-

lation. These correspond to the functions of Eq. (8) one by one. Here we

recommend the screening function for the practical use;
J(R)=exp(—1.92Z°%°R+0.749Z°%°R'°—0.146Z°*®R?) . (10

This is not universal function but practically useful.

6. Conclusion

We knew that our potential calculation is reasonably precise to reproduce the
experimental data of the differential scattering cross section. And a new type
of screening function having only three parameters was given. This screening
function can be the precise IP using the parameters in Table 1 or the averaged
potential using Eq. (10) for practical use, according to demands. This type
can be a candidate of the good form of the screening function as seen in Appendix.

There are some Tables (6, 14, 15] to show the Z dependence in the homo-nuclear
IPs, however, it seems that no systematic Table useful for wider internuclear
distance has been published hitherto.

Strictly speaking the sputtering yield concerns with the low energy atomic
collisions in a solid. Therefore the solid effect should be taken into the potential
calculation. IP between solid-state atoms will be given [20]. Furthermore
the sputtering yield can be roughly estimated only by homo-nuclear IP, however,
as well as other quantities like range distribution or range straggling, the
hetero-nuclear IP should be evaluated for the cases of atomic collisions in
solid. The intent to construct the hetero-nuclear IP from homo-nuclear IPs

1S NOW 1n progress.
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Appendix
The MLJ potential has only three parameters and is simple in the form.

In order to examine the validity of this form, the existing universal potentials
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such as Moliére or Lenz-Jensen are expressed in the next form of MLJ potential;
P(x)=exp(— Ax+ Bx'5— Cx?),

where A, B, and C are all Z independent constants. The best fit values of

them are determined by the least square analysis. The results are illustrated

in Fig. A associated with the original functions.
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Fig. A The validity of the form of the MLJ potential of Eq. (7). The
original universal potentials are shown in solid lines, while the corre-
sponding MLJ potentials are in the dotted lines. Symbols denote the
potentials, i.e., Thomas-Fermi [21], Moliére [22], Kr-C and WHB
(101, aLJ [1], and LJ [19].
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Table 1

tween gas-state atoms.

2,742
3.483
4,190
3.291
3.390
3.568
3.751
3.891
4.012
3.763
4,263
4,620
4,518
4,314
4,373
4.522
4,435
4,584
4.821
4.865
4,793
4,757
4,633
4.759
4,779
4,808
4,838
4.764
4,907
5.043
5.214
5.325
5.398
5.476
5.556
5.477
5.613
5.690
5.718
5.692
5.706
5.734
5.740
5.759
5.927
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Three parameters (a, b, ¢) in Eq. (9) for each homo-nuclear IP be-

Parameters of screening function

1.754
2.334
3.680
1.867
1.798
1.953
2.148
2.293
2.420
1.575
2.280
2.829
2.641
2.274
2.307
2.491
2.370
2.514
2.867
2.881
2.713
2.594
2.335
2,468
2,435
2.416
2.400
2.241
2.382
2.520
2.741
2.883
2.974
3.074
3.180
3.025
3.204
3.312
3.342
3.279
3.281
3.303
3.293
3.302
3.564

U(r)
c

.6585
.6875
1.286
.5112
.4395
.4886
.5695
.6423
L7175
.2784
.5012
.6943
.6236
.4835
.4853
.5451
.5061
.5491
.6662
.6690
.6042
.5564
4666
.5002
.4832
4713
.4610
.4176
.4465
L4760
5417
.5851
.6129
.6464
.6826
6211
6712
.7083
.7189
.6987
.6985
.7019
.7028
.7066
.8119

= exp(-ar + brl-5- cr2)

g

.01856
.02427
.02776
.004579
.04314
.003621
.003048
.003153
.003864
.009576
.004892
.006816
.003092
.009092
.009996
.008664
.01212
.01156
.008222
.008791
.01169
.01374
.01769
.01601
.01667
.01707
.01746
.02040
.01796
.01599
.01364
.01264
.01243
.01224
.01187
.01452
.01284
.01258
.01319
.01475
.01551
.01598
.01683
.01741
.01522

z

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

a

5.871
5.788
5.815
5.862
5.936
5.972
6.003
6.023
6.077
6.205
6.248
6.253
6.249
6.186
6.192
6.215
6.206
6.270
6.231
6.233
6.235
6.242
6.247
6.257
6.413
6.504
6.574
6.624
6.698
6.742
6.781
6.895
6.934
6.939
6.938
6.885
6.922
6.983
7.000
7.027
7.050
7.099
7.157
7.221
7.172
7.188

3.438
3.265
3.271
3.316
3.410
3.451
3.485
3.502
3.574
3.764
3.833
3.809
3.767
3.613
3.589
3.588
3.552
3.620
3.517
3.488
3.447
3.422
3.391
3.397
3.585
3.705
3.796
3.585
3.951
4,006
4,056
4,242
4,294
4,288
4,260
4,144
4,181
4,254
4,283
4,317
4,342
4,405
4,497
4,602
4,498
4.510

o denotes the relative standard deviation.

.7598
.6876
.6795
.6880
.7159
.7265
.7362
.7403
.7622
.8228
.8486
.8380
.8184
.7604
.7492
.7448
.7305
.7500
L7116
.6992
.6810
.6687
.6532
.6594
.7116
.7488
.7780
.7985
.8285
.8480
.8656
.9422
.9623
.9557
.9379
.8864
.8935
9135
.9225
.9328
.9375
.9525
.9842
1.023
.9845
.9899

o

.01718
.01944
.01961
.01950
.01904
.01921
.01946
.01990
.01970
.01817
.01826
.01876
.01939
.02095
.02141
.02155
.02221
.02179
.02290
.02337
.02391
.02431
.02473
.01658
.02298
.02200
.02144
.02125
.02091
.02082
.02082
.01976
.01976
.02000
.02057
.02183
.02180
.02167
.02164
.02182
.02205
.02184
.02151
.02114
.02242
.02285



