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Abstract. Quaternionic formulation of classical electrodynamics by using “biq”
(real part of a complex-quaternions) has been presented. Also, the solutions of

Maxwell’s equations have been given using regular functions of a biq variable.

Introduction: Complex quaternions are a powerful natural tool to describe mathe-
matically classical electrodynamics and to obtain solutions of Maxwell’s equations in

vacuum by means of regular functions of a biq variable. [1, 2, 3]

§1. Biquaternions, bigs, Maxwell’s equations and regular conditions for a
function of a biq variable.
A complex quaternion (a biquaternion) Z is defined as:
(L1 z =§:Oe,1(x#+iy#)=X+iY, (£=0,1,2,3)
e
=xot+x+i(yoty)
where e, satisfy the following equations:
(1. 2)  ee,=—ege,=1es, €tc.,, i=+/—1,
eo=1, ei=1, (k=1,2,3)
and
T=¢,x' t+e,x2+ €313, y=e,x't+e,x?+eyxd,
is the “vector part” of X =e¢,z* and we call z, the “scalar part” of X. We designate
X and Y the “real part” and the “imaginary part” respectively, of Z.
“Bigs” :
When the imaginary part of a biquaternion is zero,

(1.3) Z=X= Seur, (z.cR)
p=0

we call specially a “biq” distinguishing it from a biquaternion.
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Conjugation :

We define (1) hyper-conjugate, (2) complex-conjugate and (3) double-conjugate
to Z=xo+v_r+i(yo+g).when

D Zr=zo—z+i(yo—y),

(2)  Z¥=zyt+tz—i(y,+y),

(3)  Z =(z%)r=(Z")*,
respectively.

For a biq X, we have X*=X.

The conjugations of a product of two biquaternions A and B, we can show that

(1. 4) (AB)*=B*A*,

(1. 5) (AB)*=B*A¥,

(1. 6) (AB) =AB.
Norm.

The product of a biquaternion Z and its hyper-conjugate Z* define the norm
of Z as

(.7 N(2Z)=ZZt=Z*Z

:(xo+iyo)2—ké (xx+1iyx)?

When N(Z)=0, we call Z a zero divisor.
Mazwell’s equations in vacuum can be cast into the biquaternion form :

(1. 8) DF*(X)=4nl,
where

(1. 9) F(X)=E+iH

- ,f—%o e,(E,+iH,) =E-+iH.

(1. 10) Eo=H0=O,

0
ox, ’

D=0y— X exde, 6,=
1A.11) I = euir=iz+i.
Equations (1. 8) through to (1. 11) is equivalent to
div E=—4mi,, div H=0,
OoE—curl H=—4mi, o,H+curl E=0.

Regularity conditions.
Extending the regularity condition for functions of a quaternion variable [1]
to that of a biq variable, we find the following conditions.

Let a function ®(X) be a function of a biq varible X =e¢,z(¢=0,1,2, 3), z*=R,
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and
(1.12) o(X)=wup+iu+i(vy+v)
where u,, v, are scalar, real functions of x-, and twice differentiable by x». @(X)
is called D left regular if ®(X) satisfies
(1.13) Do(X)=0,
where D is defined by (1. 10). Writing in components :
dotto—div 2=0,
(1.14) dove—div v =0,
dou—grad u,+curl v=0,
dov—grad vo— curl u=0.
Comparing (1. 8) and (1. 13) if I1=0, and identifying ©(X)=F*(X) together
with imposing the conditions (1.10), #(X) will give an electromagnetic field F(X).
Thus, an electromagnetic field quantity and regular functions of a biq variable
are intimately related. In the following we investigate the point.
Derivation of the regularity conditions.
To give a mathematical basis tor the regularity conditions, we derive the regu-
larity conditions from the condition that a functional is stationary with respect to

the variation of the defining variable surface.

Let us take a four-dimensional volume of equation (1.13):

(1.15) fﬂp (I)(X)dv“:fss AX*0(X) =0,
where dX*=e,ds*—=e,i*ds, i.: direction cosine of the normal to the surface element
ds of the S3. In (1.15), we have used Gauss’s integral formula. (1. 15) means that
the integral of ®(X) over S? is zero if no singularity (D®2<0) is included inside
and on the S

§ 2. Solutions of Maxwell’s equations by means of regular functions of a
biq variable.

A straightforward method is to identify F*(X) as a D-left regular function by
using (1.8) and (1.13) and to impose the “vector condition” (1.10) on ®(X) as an
initial condition. Then, if ®(X) satisfies at x,=0: u,=1,=0, then @(X) satisfies
the conditions for all time x,.

We now introduce another method.

Let F*(X) be given by :

(2.2) o(X)=(1/2) [o(X)D],
where ®(X) is a D left regular function and satisfies eq. (1.13). Then, F*(X)
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satisfies Maxwell’s equations and (1.10) as shown below.
2.2) DF*(X)=(1/2)D[(D(X)D]=(1/2)[D<D(X)]D=0.
From eq. (2.1), the scalar part of (2.1) is: Ey=0puy—div u=0, Hy=04v,—divv
=0, by virue of (1. 14).
Thus, F*(X) given by (2.1) satisfies Maxwell’s equations with 1=0.
Taking the complex conjugate of (2.1) and using D*=D, we get the following
equation :
(2.3) o*(X)D=0.
Adding *(X)D=0 to the rhs of eq. (2.1), we have for F*(X) the following :
(2.4)  F*(X)=1/2)[0(X)+0*(X)ID=U(X)D
where U(X) is the real part of o(X)=U(X)+iV(X).
Writing (2.4) in component functions of F(X), we have, by putting UX)=
uo+u, the tollowing equations :
Ey= 6oup—div u,
Hy,=0,
E= —gyu+grad u,

2.5)

H=curlu.
Using the first equation of (1.14), we find that uy, u satisfy
(2.6)  Goup—div u=0.
Looking (2.5) and (2.6), we see that ug, u play the role of the scalar and vector
potentials of an electromagnetic field.
Thus, we conclude that the real part of a D left regular function is the scalar -
vector potential of an electromagnetic field.
Several other methods to obtain the solutions of Maxwell’s equations are
available. [2]
(1)  Generation of regular functions.
Ezample. Let G(X)=u(z,, z)+ev(x, x) be a regular function of a hyperbolic
variable X=ux,+ex, (e2=1, e1), satisfies :
dot—03v=0, (0=0/0x, 0y=0/dx,,)
0ov—ou=0.

2.7)

Replacing ¢ and z by the following :

(2.8)  e=(eyx,+eyx,+e3x3)/x, x=(x12+xzz+x32)%
we have a biq variable X from a hyperbolic variable X.
Then,

(2.9) o(X)=[G(X), [J=DD*=D*D,
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satisfies D left as well as D right regulatity conditions.

Some of the functions G(X) are X7, exp (X) and many other functions which
are analytic functions of a complex variable Z if the complex variable Z is replaced
by the hyperbolic variable X.

Fueter’s polynomial functions.
Generating functions are the following :
(2.10)  K*(X, )=(tzo+ (£ + 2))"
=[t,(xoey+ 1) +2,(xoes +x5) +23(Toes+ 23) 1"

Expanding K* in power series of ¢,, t,, t;, we define P-functions as
g

Sni=n

(2. 11) Kn(X’ t) = Z n, Pnlnzna(x>t1nlt2n2t3n3!
3

We can show easily that DK"(X)=K"(X, t)D=0, and since ¢,, t,, t, are
independent parameters, each terms Pp .,n,(X) are both side D regular:

(2.12)  DPujnyng(X) = Pujngng(X) D=0.
Exponential functions.

(2.13) exp[iK(X, ¢)] = ;;}O(n!)'l(i)"K"(X, t)
Then,

D exp[iK(X, t)] = exp[iK(X, ¢t)] D=0.
Since exp[iK(X, t)] is a special solution of D ®(X)=0, a general solution is

given by

2.14) o(X) = f f f expliK(X, )1 Aty ty, ts) dirdtydts

Putting the initial condition :
(2.15) o(X)=G(x),

we have

2.16) G(2) = [ [ [expliCaititaats+2t)] Alts, 1, 1) disdtydr,

Inverting the integral by Fourier integral :

2.17) Al tat) = @O [ [ [expl—i(t+ DIG(x, Ddrydrads,

we have :

1

(2.18) @(X):Wfffdt3dr3 expl tzy+i(z—1) ] G(o).

Polynomial series expansion.

We can easily show the following relations;
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01Pnngns(X) = Paj_inans(X),
(2.19)  92Prinyng(X) = Pryng-1ny(X),
03Pninyng(X) = Pninyng-1(X),
Thus, we have the following ;
(2.20)  9,710,7205"3 Pnyngng(X) = 6,1n,0,,n,0,3n; (ry+ry+rs=ny+ny+ns).
A D left regular function G(X) can be expanded as:

o MMM
(2. 21) G(X) = ngo 2§= Pnlnzng(x) Cnlnznay
where
(2.22) Cn1n2n3 = 01"105"203"3 G(X) | - -

Putting x,=0 and using the relations: Pn n,ny(X) zp-¢ = x;"12,"22,"3, we find

+o0 NN,

(2.23) G(X)|2p-0=G(2) = & T 2,M12,"223™ Cryinyng

n=0 Eni=n
By Taylor expansion ot G(X), we have

(2.24) Cringng = 0™ 3,72 33" G(x) | 220 -
Theorem of residues.

Theorem of residues corresponding to that in the complex variable theory is
somewhat different from that in the complex variable theory because of the ex-
istence of zero divisors in the biq variable theory. We may describe the theorem
briefly as follows [2].

Let F(X) be D* right regular and S® be a closed hypersurface lying entirely

in the regular domain V* and contains a point A inside, then

(2.25) F(A) = (87)2 f L FCOaZ (=47

where the integration by dZ* is taken over S, which is defined by
F

(2. 26) Si—v == [ [(xlz+x22+x3)1/2_x0]2+y02=€2, xo=C0nSt, 8:0].
We may derive the expressions for the retarded potentials and Lienard—-Wiehert’s

potential for a point charge. [2]

§ 3. Special theory of relativity.

We now describe briefly the special theory of relativity in the biquaternion
formulation.
1. Velocity: Let a biq X=uxy+ 2z, xo=ct be the coordinate biq of a particle. The
four velocity U is defined as

3.1) U=dX/cdr, (c: light velocity)
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where 7 is a scalar parameter chosen such that U is a unit biq:
3.2) NWU)=UU*=1.
v is called the proper time of the particle. From (3.1) and (3.2) we have
(3.3) U= (dzo/cdr) [1+(dz/dze)1=7(1+u/c)
where y=U0—u?/c?)"12, xo=cyr, u=c(dz/dx,).
From (3.2), we have
(3.9) M= NU)c%dr?=(dX)(dX)*
= dzxy’—dx?—dxr,?—dx;
2. Lorentz transformations.
A genleral linear homogeneous transformation which maps bigs into themselves
and preserves the norm of X can be expressed as:
3.6) X X'=A*XA, N(A)=1,
where A is a biquaternion
B.7)  A=cotc+i(dy+d).
The transformation can be expressed by a product transformation of a pure
Lorentz transformation :
3.8)  X,=R*(+)XR(+), R¥(+)=R(+), N(R(£+))=1.
and a space rotation :
(3.9 X,=Q*XQ, Q=Q, N(@)=1.
We can show that a unit biquaternion A can be expressed as a product of a unit
biq R(+) and a unit quaternion @ as follows :
(3.10) A=R(+)Q=QR(-),
where
B.11) A=cotc+i(dy+d),
Q=(co+id), g=(c?+d*) 712,
R(%) =g+ (coc+dod+[cxd]q)

(3.12)

where
Le Xd]=(cady—c3dy)e; + (csdy—c1dy) ey + (c1dy—codyes
Thus, (3.6) is a product transformation :
GB.13) X'=(R(+)D*X(R(+)Q)=Q*(R*(+) XR(+))Q,
and
X'=(QR(=)*X(QR(—)) =R*(—)(Q*XQ)R(—).
Thus, (3.13) and (3. 14) are a successive transformation of a space rotation
around the axis 4 by an angle w=2tan"! (d/c,), followed (anteceded) by a pure

Lorentz transformation which is moving with a relative velocity v_(v,) relative to
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the system S(X) given by
Vi=7:(1-v,/c) =AA*=R*(+)R(+),
3.15) V_=7_(1-v_/e)=A*A=R*(—)R(-),

v:=A—=03)712 v, = (V.= VE)(V,+ Vi)™

which is moving with a velocity v_(v,) relative to S(X).

3. Energy-momentum, acceleration and Lorentz force.

The energy-momentum biq P of a particle is defined as:

(3.17) P=mc*U=E+pc.

The acceleration biq is given by :

(3.18) dU/cdr=c"2(d*X/dr?)=v(dU/dt)c*=(v/c)d[y(1—u/c)]/dt.

The Lorentz force bigq K is defined as:

(3.19) (eo/2)(FU+UF*) =eqy[(Eu)/c+[uxH]/c]=K
where F=E-+iH is the electromagnetic field biquaternion.

Since K is a force and can be defined by the acceleration as:

(3.20) K=dP/dr=mc?dU/dr.

Since N(U) =1, (dU/d)U*+U(dU*/dr)=0, we have KU*+UK*=0. Putting
K=*ky+4k, we have

(3.21) ko= (hen)/c?.

The equation of motion of a charged particle is, by (3.19) and (3.20), given
by :

(3.22) K=my(d2X/d2) = (eo/2) (F(dX/d?) + (d X/d=)F*).

The solutions dX/dr and X of (3.22) can be obtained for special cases of F as
described below.
Ezxample 1.

F is uniform and constant.

The solution of (3.22) is

(3.23) cU=dX/dr=A*(r) XA(7),
where

A() = exp[(eo/2mo) [F()dr]

(3.24) Uy=(dX/dt)..o="ro(1+uy/c)

3.25) X = [TAX VA +C.

For an arbitrary biquaternion Z=x,+x+i(y,+y)

(3.26) exp(Z)=exp(xo+iy,) [cosh(a+iB)+esinh(a+iB)]

where
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«, B are real numbers such that

3.27) [g]:2‘”2[((I2—y2)2+4(£¢°Q{)2)"2i(xz—‘yz)]"2,
Example 2.

In case F(X) is given by an explicit function of X.

By solving (3.22), we have

(3.29) mo(dX/d) = (e0/2) [ J.XF(X)dXJr f YdX F*(X)]+const.

and

€o r—1 — x o 7 ’ X ’ 7 _ -1
(3.30) [=2](r—1) on[f F(X)dX +f dX' F*(X') +const]-1d X

2m,
Integrating the r.h.s. of (3.30), we obtain = as a function of X: r=G(X, ¢y, ¢;).
By solving the equation, we obtain X as a function ot 7, (¢, ¢, are integration

constants).

Energy-momentum tensors.
From equations (3.22) and (1.11): I=¢,U, we have
(3.31) K=(1/2)(FI+IF*)
=(1/8m)(F(DF*) + (DF*)*F*)
=(1/8m)(FDF*)=(1/8m)o#(Fe . F*),
where we have used eq. (1.18) and [*=[=(DF¥*)*,
(3.3) can be cast into the following form:
(3.31) K =0T,,
T,=(1/2)(Fe, F*)=eit?,.

then, ¢%, is the energy-momentum tensor of an electromagnetic field.

Appendiz. An extension of the conformal mappings in the complex variable theory
to a biq variable theory.

By the process described in Example in §2 and the potential function method,
we can map a D left regular function and a potential function trom a biq variable
to another, preserving the regularity cnoditions as well as the vector condition.
Using the mapping of the hyperbolic variables X by an analytic function of a
hyperbolic variable f(Y):

(A. 1) X=f(Y)=X(Y),
where

(A.2) X =xqtezx, Y =yo+eyy.

We consider the function f(Y)=X as a biq mapping from X to Y when z, e,

y, and e, are replaced by the following relations:
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ex=(e1x;+ex+€373) /2, x=(x2+x,2+2,2)172,
and similar relations for e, and jy.
Let G(X) be a regular function of a hyperbolic variable considered in Example
in §2, then by (A. 1),
G(Y)=G(F(Y))

can be considered as a D both side regular function of Y.
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