SU(@3) HIGGS BOSONS AND SOLITON CONTRIBU-
TIONS TO THE NON-LEPTONIC WEAK INTERAC-
TIONS

Takayoshi OKI

Department of General Education,

Okayama University of Science,

Ridai-cho 1-1, Okayama 700 Japan
Yasutaka TANIKAWA

Department of Applied Physics,
Okayama University of Science,
Ridai-cho 1-1, Okayama 700 Japan

(Received September 26, 1985)

¢

ABSTRACT

A flavor SU(3)¢ quark and octet Higgs boson model in one spatial dimension is
studied in order to explore some dynamical processes of non-leptonic weak interac-
tions. In this model, the d-s quark mixing and the soliton state contributions to

non-leptonic weak decays are presented.

1. INTRODUCTION

The flavor mixing in the weak currents is essential for the non-leptonic weak
decays. However, it seems to us that a mechanism of d-s mixing in the weak
quak-currents is not yet clear. We present one possibility of the flavor mixing of
quark in a flavor SU(3): quark and octet Higgs boson model in one spatial dimension
which is a variant of Jackiw-Rebbi’s onel. It will be shown that a spontaneous
broken SU(3): symmetry of boson ground state leads to a flavor mixing of quark
and also to the existence of soliton and quark-soliton states. The soliton looks very
much like a classical extended particle. Its energy density is localized at a point,
its total energy is finite and it is stable.

The quark-soliton system may look like an electron-nuclear Coulomb potential
system. It is known that a quark in soliton potential (in one spatial dimension)
has only one bound state with zero energy (quark-soliton). The quark-soliton inter-

actions give rise to additional proccsses of thc non-leptonic weak decays. If we
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could extend our model to a realistic three spatial model, we may expect that these
processes contribute to the enhancement of right-handed quark. For caution’s sake,
it should be noted that in one spatial dimension, a quark is handless.

In Sec. 2, a broken SU(3); symmetry ground state is defined. In Sec. 3, we
present the quark solutions and their quantization. Sec. 4 is devoted to estimate
the soliton state contribution to the non-leptonic weak process in which the enhance-

ment of rigthanded quark is suggested.

2. BROKEN SYMMETRY GROUND STATE

Let us>c0nsider a quantum field theory of flavor SU(3); quark ¢=(u, d, $)
and neutral, scalar octet-bosons ¢.(a=1, 2, ------ »8) in one spatial dimension. The

Lagrangian density is assumed to be of the form

1 a2 2 - —
L =50u"0pe — 55 [yz_¢a¢,] 4770, — £94qg”, (1)
where g=q'y,, 702[(1) (1)], 71=[0i 0,] and 2, ’s are the Gell-Mann matrices.
—1

This is a variant of Jackiw-Rebbi’s model which gives the existence of zero-
energy quark eigenstate, localized in the vicinity of one soliton of the Bose field.?
In order to review the soliton states in this model, let us for the moment ignore
the quark field in (1).

The field equation satisfied by Ga IS

oUu 02 02 oU

D¢a+a¢a=[atz—ax2]¢a+T’5a=0, (2)

where
12 2

Ulgas) == 1 =p9 ] - (3)
For a static solution ¢.(x), the equation (2) is reduced to

dz 222

s +T[ﬂ2—¢ﬂ¢‘g] $.=0. (4)
The first integration of (4) is

1 dé. dp= ..

2 dr dz = U(¢7¢a), (5)

and the static field energy E, is given by
- 1 dé. do ;
E"_fdx{Z dxr dzx +U(¢ed )}
= 2dz Ul =0. (6)

The degenerate vacua are found at the points
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¢a¢a 2#2 ’ ( 7 )
where U(¢.¢p)=0 (see Fig. 1).

Fig. 1: ¢=1+/¢.9"
The octet boson vacuum is defined at the points ¢=+ u.
For spontaneous breaking of SU(3); symmetry, we assume that all vacua satisfy
the conditions

qsl.’ ¢2’ d)a’ d’b d)s:O,
and

¢e= =+ p sinf cosp, $,=+p sind sing,
g =+ ¢ Ccosb. (8)
We make choice of the plus-sign solutions for ¢, ¢, ¢ in (8), and define our

vacuum by the conditions

¢ = 12 SING cOSp,
o (9)
¢, = SInd sing,
¢pg = £ COSY.
We note that our vacuum is in a polarized flavor state.

We find the soliton shape of ¢. which is a z-dependent solution,
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8

1

—> @7

= Fp sind cosp tanh A(x—x,),
=+ sind sing tanh 1(x—x,),

g =+ cosf tanh A(x—x,) ,

(10)

in which z, is the point where the soliton energy density is localized, and a soliton

is translational invariant. Corresponding to our vacuum definition (9), we take

plus-sign solutions.

The soliton energy is finite ;

E, = [drlg 2 20 | yi4,4m)

dr

dpa dp* 4
_fd dr dzxr _?uzx.

3. QUARK-SOLITONS

In the vacuum sector, the quark-equation is given by

{ap+Bgur(4s sind cose+2; sind sing + 2 cos@) }q > = + |E1q ™,

_ [0 1
where a=7y0y!= [z O:land B=7y0= 1 0].

(11)

12)
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In order to diagonalize the mass matrix :
g1t(3¢ SIné cosgp+ 4, sind sing + 45 cos), (13)

we define the unitary matrix U by

1 0 0
U=|0 etrcosf, sind, , (14)
0 —sinf. e*cosé,
with
1—K
tanf,=;/ —
1+K
4_ ~1/2
and K= [1 +?tan20] .

By this unitary transformation, the mass matrix (13) is diagonalized.

dm=U-egu(2s sinf cosp + 1, sinf sing + 1 con) « Ut =pg , (15)

g 0 0
where g=|0 g 0],

0 0 g
g —g 2 cos 26, , g—g 3—C0s26. d go=——g 3+cos3f.
\v/3(3+cos26.) v/ 3(3+cos 26.) \v/3(3+cos26.)
The equation (12) is reduced to
(ap+Bprg)q ™ ==+|&|qg ™. (16)

The transformed quark fields ¢'=Uqg are given by

9 =q,
q’z = COSﬁcei‘Pq2+Sinﬁcq3 y (17)
q's = —sinf.q,+cosf.e™'¢q;,

where q,=u, ¢,=d and g;=s.
This shows that our spontaneous broken-symmetry vacuum leads to the d-s mixing
with the Cabbibo angle 4. .

g = tan"‘/ i+_11§ .
In the soliton sector, the same unitary transformation (14) reduces the quark equa-
tion to the form

{@p+Bgu-tanhd(z—20) }¢ > =+ |&|g ® (18)
which is Dirac’s equations in the presence of the static potential

V(zx—2x,) = gpstanhi(z—zx,).

The equations admit the zero-energy solutions

q @i(x—x) =C; [(1)] {coshi(x—zxy)}0ir/2 (i=1, 2, 3). (19
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The normalization constant C; is given by

1
l/f_w dx{cosh 2(x—zx,) ) 2% »

We note that these zero-energy solutions are charge conjugation self-conjugate

Ci=

4 =99 0*=9 w> (20)

where gy = [(1) _01] ,

and also the soliton-quark is localized around the point z, which is assumed to be
the center of soliton configuration. So far we ignored other Higgs mechanisms
which generate the main part of quark masses m, Taking account of such mass
generations, the equation of (15) and (18) should be replaced by
{ap+B(mo+gu)}q > =%|8|¢ >, (21)
and
{ap+B(mo+guretanhi(z—1xy))}q > =+ |&|g (22)

Corresponding to (19), the equation (22) have the zero-energy solutions :
q wyi(x—xy) = le[ (1) ]e‘"’olx‘xo'{coshl(.r—xo) yooins 2 (23)

the normalization constants being

C= 1 . (24)

V[ dzemmdemsi(coshi(z — o) y2oen

Following Jackiw-Rebbi,» 2 we assume that the quatization of quark fields is
achieved by the usual expansion in modes. In the vacuum sector, the expansion of
a quark operator a’ @ 1s defined by

7w = 2P b uBu(2) +ee® d 1o Fula)). (25)

u (), is a positive energy solution of (21), and v {3, is the charge conjugate of the

negative energy solutions. The energy spectrum is
|60 | =/ m2+ k%, mi=mo+pugi. (26)
The quark creation (annihilation) operators 4! (5 ) and the anti-quark crea-

tion (annihilation) operators 4, ' (4 ) obey the usual commutation relations

[bk(i) , b Y:|+ = 0:;0(k—F),
| 27
[, 31, =0i0(k—F),

any other anti-commutator=0.
In the soliton sector, we may imagine a quark to be just as a quarkic atom

like a g-mesic atom whose center is situated at x,. Let us denote the quark field
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operator in soliton sectors by é\i’(x—xo). Generally, the parameter x, in c}\i’(x—xo)
should be a quantum variable z, which corresponds to a position operator of collec-
tive motion of an extended particle-like soliton. However, we ignore the quantum
nature of z, and replace it by an expectation value xo=<;0> in the following.
Moreover, we assume that the (;i’(x—xo) 's with different value of xz, are each
other independent field operators which are specified by z,.
Quantization again is defined by an expansion in modes
‘;z'(x_xo) = a® (£4)q:i > (x— o) + % {e‘ié,‘f')‘ Bk(i) (x0) Ug:))k<1'xo>
+eie®t DP Y xy) Vi, (x—x0)}, (28)

U, being a positive energy solution of the equation (21), and V&), the charge
conjugate of the negative energy solution,

VE.i—))k = 03 [UE;,-))k]* (29)
The operators B ' (z5) (B (20)) and D' (xo) (D (x,)) create (annihilate)
conventioal quarks and anti-quarks with energy &® ’s. a @ (2% (a ¥ (x,)) creates
(annihilates) a quark-soliton being localized at z,. We assume the commutation
relations

[ B (xo), BT (x9)],= 0:;0(k—Fk),

[ D& (xo), D& (20)],=0i;0(k—F), (30)

[a® (x),a P (xo)]s = 045,
and all other anti-commutators are zero. Specifically, any combination of two

operators specified by x, and z,’ (zy3cz,") always anti-commutes.

The charge operator in the one soliton sector is defined by

Ay A
— - _ 3 — ‘.
Q= [dz: ¢ (z—1y) (5 +2\/3>q. : 31
where Ay =UxU" and i'=UiU".
By substituting the expansion (28) into (31), we find

Q:%a W1z a® (x,) _%a @1 2) a® () _%a @ t(x) a® (z,)

+ [ B @9 BE (2)= D& (z) D (20))
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We consider the non-leptonic Lagrangian
Ly-1=2/2 Gsinf. cosf. (uy.s) (dyu), (36)*
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operating on the S(x,) soliton state produces another state of the same energy ;
hence we have many degenerate states. To distinguish them, we may lavel them
as |0; S(xy)> (unoccupied quark-soliton state) and [q(y:; S(x)> (occupied the i-th
quark-soliton state)

a®(20) g w15 8(x0)> = |0; S(xo))

a®@N(x0)|0;8(x0)> = g oy15S(x0)>

a®(xo)|qwi; S(xe)> =0

a®Nxo)|qwi; S(x)> =0

etc.

33)

The charge quantum number of 10;S(xe)> and |q (o i; S(xp)> are given by
Q10;5(z)> =0,

Q1913 (x> = 5, Qlgws: Sz)>=—~

Qlgws; Sz = —=.

The charge quantum number of |q ¢y ; S(xo)>, therefore, is the same as the ordinary

quark state.

4. SOLITON CONTRIBUTION TO
NON-LEPTONIC WEAK INTERACTION
For an example of non-leptonic Lagrangian, we take the form of charge current
product,
L =2y2G (gh7.9) (gh-72q), (34)
with 1+=-;—(ll+ilz), x_:%(z,—az).
The unitary transformation (14) reduces it to
L'=2\/2G (qUaU'v.q") (UA_Uty*q)
=2v"2G [cos? 8. (wy.d) (dyu)
—e' sinf. cosle (W'yas’) (dvew) (35
—e~ sing. cosb. (u'y.d") (s'yu’)
+sin?0; (w'yas’) (s'yew')] .
The second term (the third term) of this expression transforms a s-quark to a
d’-quark (a d’-quark to a s’-quark). We see that the initial current-current product
of (34) leads to the non-leptonic Lagrangian of (34) in our SU(3)-broken symmetry.
Hereafter, we discuss the process which is caused by the second term of (35).
For the sake of brevity, omitting the prime notation of ¢/, let us represent the

transformed quark by ¢=(u, d, s) in the following.
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We consider the non-leptonic Lagrangian
Ly-1=2v/2 Gsind. cos. (wy.s) (dyu), (36)*
which gives rise to transition us—ud (see Fig. 3).

If we take the weak boson and the color gluon interactions for the non-leptonic
Lagrangian in a more realistic model, the bare Fermi vertex (Fig. 3) would be
replaced by those graphs in which a W-boson connects two different quark lines
and the vertices are dressed by gluons.? 4

d u

s U

Fig. 3. Fermi vertex for the transition us—ud.

u d u d

S u

a) b)
Fig. 4. g repesents a gluon and W is a weak boson.

* In a case of three spatial dimension, u, d and s are replaced with the left-handedd ur, di
and sy in (36).
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u(d) u(d)
{
g
i
|
u u
/4
$ d

Fig. 5. Gluonic monopole graph.
Some examples of such elementary vertices is shown in Fig. 4 and 5 where the
color indices of quarks and gluons are omitted.
It was known that in the standard model of three spatial dimensions, the types

of graphs ot Fig. 4 contribute to the renormalization of weak coupling constant ; the

enhancement of the ATz—;— transition and the supression of the AT=% transition.*

It also was demonstrated that, taking account that mw(W-boson mass) >> my(quark

mass), the graph of Fig. 5 can be replaced with the product of a four-quark point
u(d) u(d)

<

|
; N
|

S d

Fig. 6. Reduced gluonic monopole graph.
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interaction and a gluonic monopole one shown in Fig. 6, which is expected, as a
crude approximation, to enhance the right-handed quark contribution to the non-
leptonic hyperon decays.’

Inspecting the color exchange or non-exchange character of each vertex in
Fig. 4 and 6, we can see that the quark-soliton states could affect the lower vertex
in Fig. 6, as we are assuming a white soliton. In order to estimate the soliton-state
contributions to the non-leptonic vertex in our one-spatial model, at the first, we
consider the transition of an ordinary quark to a quark-soliton in the soliton field.

The vertex corresponding to this process is shown by Fig. 7.

q)

x |maswm
S(.’ro)

q

Fig. 7. Soliton and quark interaction vertex.

The bold line represents’a soliton-quark line and the bold
broken line shows an extension of soliton.

The transition matrix element ot an ordinary quark (q) to a quark-soliton
(g« ) in a presence of soliton field (S(x,)) is given by
H(k ; 20) = {q >3 S(20) | g1qRaqeba | q:(£)>
= gﬂcifdx e~™ol=Zo{ coshA(x — x,) } 79+’ 4
X tanhA(x —x,) ™, (37)
1q i3 S(xo))> being a quark-soliton state.

Assuming that a quark-soliton wave function Cie™™d*=%dl{coshi(x—zxy)} 7%/ % is

localized in an approximate range of around x,, we can estimate the z-integrals

my

in (37) and (24), then we have

A ) i
P C etk (38)

mo

H(k; xy) = ign
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with Ci=+/my, .

'

Let us consider the s(£) —d(#’) inelastic scattering into the state Sy —d ¢ as

shown in Fig. 8.

S dq

X9
x N N N N x

sCk) d(k)

Fig. 8. s-d inelastic scattering into the s, -d o, state.
k(k’) is a s(d)-momentum.

Making use of the sudden approximation method, the scattering amplitude is defined
by

bo(k+E) = (—i)zzyr% f dxoHy(k ; x4) Hy(R ;5 x0), (39)
u(d) u(d) u(d) u(d)
' ¢ i
i g
/] U
u u +
Uy U
s d

Fig. 9. The quark-soliton contribution to the gluonic monopole vertex.



SU(3) HIGGS BOSONS 67

where H, and H, are defined by (37) and -2 ) s a s(d) quark travelling
Ak Ak

time through the range -}— of soliton field. Substituting (38) into (39), we obtain

b :M= 327rﬁi:_. ) (40)
mo my

The additional graph to Fig. 6 is shown in Fig.9. In this process, the Fermi coupling
constant G of four-quark vertex is replaced by bG. If we take gu/m,=10"!, and
me=30Mev, we obtain '

b —~10-10 (41)
We, therefore, conclude that the soliton state contributions to the non-leptonic

hyperon-decay are negligible small.
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