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Abstract

For the algebra of hypercomplex numbers in our theory, neither the associative
law nor the alternative law is assumed. We have assumed the power associative
law for the algebra and the anticommutation relations for the units i (k=1, ...,
2s—1): i1k +ixi;= —28,. There are several subvariables which do not contain certain
coordinate variables ;. Accordingly, there are several regularity conditions each
of which is applicable to functions of a specific variable. It is shown that a

function G(X)=[]"'F(X) is a regular function of a hypercomplex variable X =
. . 2s—1 82
ZTot+uxi+...+izi 12251, [ Ek;; aik

of a complex variable X =x,+72. We have derived the integral theorems, regular

;- and assuming that F(X) is a regular function

polynomial functions, exponential functions and Fourier integral theorems. The
results may be of use even to those functions of a Clifford variable and to those

of an octonion variable which are alternative or even associative.

I. Introduction.

In a previous paper, > we have developed a theory of functions of an octonion
variable. To extend the theory to a higher hypercomplex variable which is not-
associative and not-alternative, one would expect to confront with a great difficulty
in constructing a theory of a nonalternative hypercomplex variable compared with
an alternative hypercomplex variable such as an octonion variable as we have
discussed before.

However, as has been illustrated in this paper, the theory of regular functions
of a quaternion variable ® or an octonion variable we have developed in previous
papers can be extended without a serious difficulty in constructing a theory of a

nonalternative hypercomplex variable including “16-nions” (not-alternative) and the
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higher hypercomplex variables such as “2»—nions” for n=5, 6, etc., which are
constructed from octonions by a successive application of the “Cayley-Dickson”
process @ for some kind of hypercomplex functions.

In this paper, we have developed a theory of regular functions of a hyper-
complex variable which is not-alternative. However, the theory can be applied to
hypercomplex variable not only those of a Clifford variable but also of a hyper-

complex variable including an octonion variable.

II. Algebra of hypercomplex numbers ‘‘2"-nions”’.

We define a 2*-nions A by a pair of 2#-nions a;, a; and the sum and the pro-
duct of two 2"-nions A and B are as follows.
1)  A=(ay, a2), B=(by, b2),
AxB=(a1+ b1, az*b3),
A(B+C)=AB+AC, (B+C)A=BA+CA,
and
(2) AB= (a1b1—b2as, azb1+b2a1)
where b5y, b, are the conjugate of &), b. The conjugate A of A is defined as:
(3) A=(ai, —az).
In the following, “2#-nions” for n=0, 1, 2, 3... are described.
(1) “2%nions” are defined as real numbers: the conjugate r of r is the same as
r.r=r.
(I1) <“2-nions” are complex numbers:
A complex number ¢ is defined as a pair of real numbers ri, and r.. Let
c=(r, r2), ¢’=(r/, 1), 1r, r3, r’, i’ €R,
then
ctc=(rt+r/, rnr),
and by (1) and (3):
(4) = (rir’ —rdrs, rary +r2'r).
The multiplication rule given by (4) is the same as that of complex numbers
when we put (ry, r2)=ri+ra, i2=+/—1.
(III) “22-nions” : Quaternions.
A quaternion Q is defined as a pair of complex numbers ci, c2
Q=C(e1, c2).
The multiplication of two quaternions Q, Q' do not satisfy commutation law :

Q Q'—Q Q0.
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Even though complex numbers are commutative, a complex number is not equal

to its conjugate: c;~c;, two quaternions in general, are not commutative :
QQ+#Q Q.
(IV) <“23-nions” : octonions.

An octonion A is defined as a pair of quaternions ai, a» and the multiplication
rule of two octonions derived by Cayley-Dickson process (4) results in that octonions
are neither commutative nor associative.

Using the multiplication rule (4) and using that two quaternions are not com-
mutative, we can show the following relations: Let A, B, C be octonions, the
associative law does not hold :

(6) (AB)C - A(BC).
(V) *“16-nions”.

Using the multiplication law (1) and that octonions do not obey the associative

law (6), we can show, for 16-nions, the alternative law is violated :

(8) A2B=£ A(AB).

By equations (8) and (2), we can show that 16-nions are no longer a division
algebra® and are not a normed algebra .

(9) |AB|#|A||B|, |Al=AA.

We may proceed to define a 2**1-nion by a pair of 27-nions through the process
(1) and (2), starting from real numbers by a repeated procedure (1).

For “27-nions”, the basis units o, 1, ..., Z2n_1 satisfy:

(10) ijiptintj=—205kio, fo=1; 1205, k2" —1.
In the following, we confine ourselves to consider hypercomplex variable the units
of which satisfy the relations (10) and the algebra is assumed to be neither associa-

tive nor alternative but power associative: A"A™=A"*",

ITII. Regularity conditions and integral theorems.
(A) Rcgularity conditions.

We define several regularity conditions for functions of a hypercomplex variable
belonging to an algebra «.

We consider functions of a hypercomplex variable which takes the value of
hypercomplex numbers belonging to an algebra « (we do not assume alternative
law for the algebra: A2B=A(AB)). The algebra has n units: ip=1, iy, Iz, .
satisfying :

ey In—1

(13) ijik+z;,z',:—25ﬂc, for 1.2, koin—1.
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We consider functions of a single hypercomplex variable X,, expressed as:
m-—1

(14) Xm:xo+ > ikxk, Zémén,
k=1

and the domain of (xo, 21, ..., 2x) is in m-dimensional subspace of the n-dimensional
space (Zo, L1, ..., T, +vo Tn_1).

When m=n, the variable X, is in a region of the n-dimensional space but for
m<n, the region of space is confined in the region of the m-dimensional subspace
of X,.

As for example, in the case of octonions, the space of eight dimension, we may

take the variable X, for m=2, 3, 4, ..., 8, which are defined in 2,3, ..., 8 di-
mensional space, respectively.

In the following we consider functions of a single hypercomplex variable X,
where m is a fixed positive integar when we deal with a function. We do not
assume neither associative law nor alternative law for the hypercomplex variable.
We assume the “power associative law” for the variable X, :

(15) Xn*Xpn"=Xn*r,
for any integars r and s and the commutation relations (13).
Now we introduce a regularity condition as follows :

In the following we omit writing the suffices m of X, and D, but write simply

X and D. We understand that when m<<n, functions we are dealing are in the m
dimensional subspace.

Let F(X) be a function of a hypercomplex variable X, then the regularity
condition is expressed as:

(16a) DF(X)=0, (left D regular), D o m
(16b) F(X)D=0, (right D regular), 9% &5 0z
in the m dimensional domain 4.

When m=n, (16a, b) are called “regularity condition in the n-dimensional space”
or “full regularity condition” and when m<n, (16a, b) are called the “regularity
condition in the subspace of m-dimensional space” or “partial regularity condition”
(see for example: in the case of quaternion variable n=4, we have introduced two

regularity conditions: m=2 and m=4.®)

(B) Integral theorems.

From (16a), integrating DF(X) over the m-dimensional volume, we find :

(17) JEdem(DF(X))z deF(X),

Sm—l
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where 4X is the surface element of the m—1-dimensional hypersurface of the m-
dimensional volume V.. In the last equation, we have used Gauss’s divergence
theorem over the hypersurface Sn_i. The dX is the surface element of the hyper-

surface S,_: and is a hypercomplex number expressed as:

m—1

(18) dX EE_JD Skir ds,
£, are the direction cosine of the normal to the surface element dX, ds is the m—1-
dimensional volume of the surface element 4X.

Let F(X) be right D regular everywhere in a m-dimensional domain Vn,

enclosed by a m—1-dimensional hypersurface Sn_:, then the value of the integral

J defined in (17) is zero:
(19) J = deF(X):O.

Sm—1

IV. Regular functions.

We now introduce special regular functions through a similar process we had
used in the case of a quaternion variable and of an octonion variable.

Let G(Z) be a function of a complex variable z=ux,+iz, i=+/—1, and is regular
in a domain 4:
(20) G(2)=G(xo+izx)=u(xo, x)+iv(xo, ).
Then u, and v satisfy the following condition :

ou v ov ou
L) o T or ome - oz’

and

(om0t ) (5)=0

We now introduce a function G(X) of a hypercomplex variable X.

(22)  X=rzot 3 iere.

1
Writing X in the following form:
(23) X = xo+1izx,
where
= (22 + 222+ ... + 2%, _1)"?=a scalar,
1=z V(121 +i2x2+ .. Fim_1Zm_1)-
Replacing X in the regular function of a complex variable G(Z):

(24) G(X) = G(xo+ix)=u(xo, x)+1v(x0, T)

m—1
= u(xo, )+ X 1xxk V(ZT0, )/
k=1
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Now we prove the following main theorem L

Theorem I. Let u (o, ), v (o, z) and w (x,, ) be functions of z, and z
and be defined as follows: (s: a positive integar),

(25) W +iv®=[J F(X)=[(u+iv),

(26)  w® =[]"1(DF(X)),

then, 2, v and w are given respectively, by the following :

(27)  ua® =(m—25)x7 W (u ), u® =y

(28) v =(m—2s)(x" G D), pO =v,

(29) W@ =(m—25)z" (WD), w®=DF(X),

28—1 az

where ( ), = aax( ) and [J= EU Or?
The proof of (27), (28) and (29) are given in Appendix.
Theorem II. Let m be an even number : m=2s, and the function G(X) be defined
by (20) and is a function of a hypercomplex variable X:xo+2:g::ikxk. Then
(30) ['G(X)=0,
and F(X) defined by [J*"'G(X) is a left D regular function :
1)  DF(X)=0, F(X)=[1]"G(X).
Proof. Using equations (27) and (29), m=2s, we have
w70 =(m—25)(271(u S ), +i(a 0 G ), ) =0,
(32) [*G(X)=0.
Also, from (29),
(33)  w® =[PDG(X)=(m—25)(x 1w =D ) =0,

Since m can be any even number not greater than n, we have [n/2]=p

§—1

different regularity conditions by taking the variable X as X = xo + X ipxs,
k=1

s=1, 2, ..., [n/2]=p, where [a] is the integrar part of a.
For each s, we have (n—1)1/ (2s—=1) 1 (n—25)! ways of choosing iy, ix,, ..., fkye
from (iy, iz, ..., 7,).

For example, in the case of functions of an octonion variable we have, using
a regular function of a complex variable G(X), the following regularity conditions :
(34) D,F(Xn)=0,
where

F(Xn)=[1'G(Xn), m=2s,

for m=2s=2, 4, 6, 8.,

8 moi g
Dm:"’ai‘”‘_*" Z zkia.g‘; ’

0 k=1



On Regular Functions of a Nonalternative Hypercomplex Variable 139

o 62 m—1 62
Ma= D2 + kf‘:l o

When s=1, Xo=x¢+ix which is the same variable as the complex variable.
When s=2, X, =x0-+1121+1222 +13%3 which is equivalent to the quaternion variable
we had discussed before.

When s=3, we have a regualrity condition in the six dimensional space in the 8-
dimensional octonion space:
Dq F(:ro-kilxr%...~§fi5x5)70.

We introduce another type of regular functions using generating functions:

(35) Kn(x,?’)z(xo7+<}*.7>>n=<"§tk<xk+ikxo>>n

—_> m—1 m—1 m—1

. —> . —_— >
where t = 3 ixte, T == 25 LTk (xot)= 2 itk .
k=1 k=1 k=1

We define polynomials Pnngeeon,,(X) as follows :
Snp=n

(36) Kn(X,7):( b n! P”‘l"'-’ nm—1(X) t1n1t2"2-.-tnm"1.

m—1
Ty, es M= 1)

We show that Pa,...n,,(X) is both side D regular, where D is defined as

S 8 —m—l . 0
= 81‘0

Proof. We have:

EK"=< 0 _mz—:l. 0 7>K"

i~
axo k=1 6.’l’lc

1 — .
k=1 Oxx

m—1 —> m—1n—1 .
= STKrt K= 3 B K™ K™t
r=0 k=1r=0

n—1t —>» n—-1 —>
= ¢t K= 5 t KL
7=0 r=0

Because_; and K commute : TK = K?, the right-hand side of the above equation
is zero.
(37) DK~=0.
That is K» is D left regular and we can show also that K is right D regular by
the same procedure as the above.

Now we derive both side D regular polynomials of . Expanding K™ in a
polynomial of #1, 2, ...y Im-1:

K":(tl(x1+i1xo) + ... S tm1(Lm- Fim_1Xo))"

Snp=n
- ¥ p 1 Paingeren (X)) timta"z..t"no}
1n2 m-1 m=1
(nq,m9, ... tm—1)

where the summation is taken for all combination of (7, nz, ..., nm_1) subject to

m=1

the restriction: 2 nx=n.
k=1
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Differentiating K with respect to ¢y, ¢a, ... tm_y, respectively, ni, ns, ..., np_; times,
we find from (36) :

(373) . . 1 S o Kn =n ! P'”I"'Z"'nm—l(X)’

mlaz! . opm_y! Oty™1 Btyna Otz"2 .. (?t:fml :

m—1
where 3 rp=n.
k=1

G7) DPanyevon, ((X)= 1 1o s o

1 et n
n. II nr! 8t1"1 atm@ 1
r=1

Thus, Po,.. oy (X) is left D regular.

Some relations among P functions are described in the following.

m—1

Let Z Te = 2 Nng=n, then

(38) """"""""" Pnlnz---nm_1<X> = Bnl?‘lanzTg"'Snm_lfm_l ’

0 Payny. 1@;1,_( X)

(39) Pret) NG o)

To prove the above relations we prove first (39).

Proof : Differentiate K with respect to x,:

oK n—1
T = 5 K1, K7 — ity e
2 r=0
Eng =n—1)
T D Papngn ((X) et

G 1)

= ! P,,l...n‘...,,m_l(X) LE4E N e AR RN s

(40) = Z n.’ P"l"‘",l"l"'"m-l(X) tlnl'“tln/l”'t:::ﬁl‘l.
Using (36) for K», we have

oK™ a n n P
4D o =5 nl ( TR IERNG o) IR

Comparing the coefficients of #"x of (40) and (41), we have

G}

(39) e, Priveenpereny ((X) = comgeterem, (X))

By repeating the process (39), we obtain :

on
(38 7a;iinl...af_ifrzrzfifpnl"‘”m-l(X) =Poo...o( X)=1
and from

O"Payvomp (X))

Nom —
oxym1.. “0x,m !

— — >
on(zot +(x et ))m
01‘1”1 v al‘:{ﬁ;‘

=nl (e ing ) = s (0

we obtain (38).
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V. Fourier expansion.
(A) Exponential functions.

Let us define an exponential function as foliows:

(42) gl D) = () (aof + Gy = 1 (D7
n= n—u n.
The exponential function is both side D regular :
(43) D i ml+ @) = giagi+ G DD H=,
Since (z+£) is scalar:
(44) @t G0 = (i G D izl
— @D it
=e cos(xot)+»~t sin(xot)

n-—1

where t=( Z tkz)

(B) Fourier representation of regular functions.

Let us consider the following function :
+ o0 s .
(45) @(X)zf fe" (mot+ 20> A(t ) dtidtz - dtm_r

where A(?) is a function of 21, ¢2, *+, tm-1.
d(X) is left D regular:

(46) DP(X)=0

Putting £,=0 in ®(X), we have

(47) (P(X)lzo;o:d)(z):f---fe“;'TD A(t) dtrdty - dtm_,
which is a Fourier integral. A(?), then is expressed as

— + oo L - -
(48) A= gpyuns [ [t @D 0@ derdes - deny

Inserting A(Z) in ®(X), we have

(49) CD(X) — sz%m:rfi: fei (zo7+7(7——5)) q)(?) dridrs o drp_y

Appendix. Proof of theorem 1.

From the equation (23) and the following two equations, we have:

%} 0

(A—l) a"r]:‘l' = é;f(x 1( 2 ZJ.I'])) = zkx 1z XX 2,
m—1 0: af(xo’ .Z')
a3 (5, )(5m) o
A 3 m-—~1 72 . ( 2 N
( - ) El axkz“l —(m— )lx s

141
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(At E L fan 2= (=22 (o, 2))at (St 2))ss

2
k

g; () and f(xo, x) is a function of x, and z.

From (A-1) through to (A-4), we have

(A-5)  [Uf(xo, x)= foo+ faz+(m—2)27(f)s,

(A-6) L1 (Ef(xo, 2))=i(foo+ faa+(m—2)(27'f)z),

(A-T)  D(Gif(xo, x))=—fot+ifo—(m—2)z7'f.

Using the relations (21), we find from (A-5) through to (A-7):
(A-8) [dW+iv)=u®D +ivD =(m—2)(x uz+i(x710)z),
(A-9) D(u+tiv) = —(m-2)xrlv=w®,

In the above equations, we have used the relations given by (21).

where ( pz=

We now prove the following equations :
(A-10) w9 = [Ju(xe, x)=(m—2r)(x7u; "),
(A-11) v = [0 (Go(xe, x))=i(m—2r)(2 0 "D ),,
(A-12) w@ = [0 D(u(xy, x)-+iv(xe, x)))=(m—2r)(x 7w, ")
and

(A-13) ugg™ +ufP = =2(r—Dax tuf",

(A-14) 0™ + 08 = —2(r—1)(a"w D),

(A-15) wi P 4wl =-2(r—Dawi P,
We see that by equations (A-8), (A-9) and (21) and identifying u @ =u, v©@® =v,
and w P =D(u+:V), equations (A-10) through to (A-15) hold true for r=1.
Next, assuming equations (A-10) through to (A-15) hold good for r=r, we prove
those equations hold good also for r=r-+1.
(A) First, we prove (A-13) for r=r-+1.
Take u > and use equation (A-10) for r=r, we have:
=g + usp = (m=2r)((27u"" Yoo + (7% )is)

Since x does not depend on x,, we obtain the following :

I= (m=2r)(x7 (ugg ™" + ugz7" )z — 2271 (27100 )a),
Since (A-13) holds good for r=r, applying (A-13) for r=r to the above equation,
we have
(A-16) I=u + alp = —2r(m—2r) (" (x ")) .
Using (A-10) for r=r, we have I=—2r(z'u,“>) which gives equation (A-13)
for r=r+1. Thus. (A-13) holds good for all positive integars r.
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(B) We now prove (A-10) for r=r+1, provided that (A-10) and (A-13) hold
good for r=r.
Using the relation (A-5) for >, we have:
w =u =uy’ +ufP + (m=2)(z"u)
Applying the relation obtained in (A): (A-16), we have
u @O = (n—=2(r+1)) ().
Thus, we have proved (A-10) for r=r+1.

(C) Assuming (A-14) and (A-11) hold good for r=r and prove they hold good
for r=r+1.

Let I,,: be
I =06 + 0.2 = (m=2r) (27100 Yygq (27100 ),0)
=(m—=2r)(x7 (v~ + v ) =22 (2w D)),

By the assumption that (A-14) holds good for r=r, we obtain using (A-14):
(A-17) L= (m—2r)(=2r)(z7 (200 ) )= —2r(z "0 ), .
In the last equation (A-11) for r=r is used. (A-17) is just the equation (A-14)
for r=r+1. Thus, (A-14) holds good for all positive integars r.
(D) Now we prove (A-11) for r=r+1, provided that (A-17) holds good. Using
(A-6) for f=v*D(x, z), we have:

VU = [ QoM = (v + v+ (n—2)(x7 v ),).
Applying eq. (A-17) for v> + v<? =- I,,,, we have equation (A-11) for r=r+1.
Thus, we have proved.

(E) (A-12) and (A-15) can be proved by replacing u ¢ by w® = D(u+iv) in
(A-10) and (A-13), respectively.

Conclusion.

We have seen that many of the general method and results can be extended
to the case of a higher hypercomplex variable such as an octonion variable, a 16-
nion variable and so on for which we do not assume the associative law nor the
alternative law but assume the power associative law for constructing regular
functions.

Thus, the general and common features of the theory of functions of a hyper-
complex variable are largely dependent on the power associative laws. The specific
features of the theory of functions of a particular hypercomplex variable is not yet

established in the present paper and has to wait for some time to come.
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