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ABSTRACT

It is insisted that the local SL(2, C) transformation of a spin basis ws generates
not only the local SO(3, 1) transformation of a Lorentz basis E,, but also the
extended GL (4, R) transformation of a coordinate basis 9,.

The two bases E, and 9, are chosen, at the outset, so as to coincide with each
other in the flat spacetime. The separation of two bases E, and 0, suggests at
once the existence of a field h,” which connects them. Using this field it is shown
that the invariant action under the local SL(2, C) transformation leads to the
Einstein’s theory of gravity including the extension to the case that a matter field
q is a spinor, provided that the original action is invariant under the Poincaré

transformation.

§1. INTRODUCTION

Since Utiyama® pointed out in 1956 that a gravitational field was also a kind of
gauge fields, the extensive works have been done on this subject.
These works could be classified into the following three categories in terms of
different gauge groups, i.e.,
(A) Lorentz? or SL(2, C)?»® gauge theory,
(B) translational gauge theory®,%,
(C) Poincaré gauge theory®.
To begin, we review these gauge theories from the view-point of the gauge
group operations.
First, we give the definition of terms used in the following. We shall call the

gauge theory under consideration the external (or briefly E), internal (I), or
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external-internal (E-I) theory, in case corresponding respectively to the case that
the generalized transformations of the group cause the transformation of coor-
dinates, fields, or both of them. It is obvious that the theory of (C) type is an
E-I theory. However, the theory of (B) type may be either E-theory® or E-I
theory® looking upon the generalized translations, i.e., the general transformation
of coordinates as the generalization of the translations or the translations plus
Lorentz transformations respectively. Next, let us consider that the theory of (A)
type could correspond to which of the E, I, or E-I theory defined above.

First of all, it should be noticed that we have two viewpoint® on behavior of
the coefficient matrices a* (2=0, 1, 2, 3) of Dirac equations under the transforma-
tion of coordinates, i.e.,

(I) ¢ is an invariant constant matrix,

(II) o is transformed like a contravariant vector.
In the flat spacetime background it seems to be natural to adopt the viewpoint (I).
This viewpoint gives the connection of the external transformation of coordinates
with the internal transformation of spinors.

However, if we must consider the general transformation of coordinates in the
curved spacetime background, then this connection will be broken, and it will be re-
quired that o~ should be taken as a contravariant vector,® because there are not the
spinor transformations corresponding to the general transformation of coordinates.

The conventional (A) type gauge theories of the gravity have been formulated
as the invariant I-theories under the general transformation of coordinates in the
curved spacetime background, regarding ¢ as a mixed quantity of vector and
spinor? or by introducing the fields equivalent to ¢~ ’s>® in order to separate
the internal transformations from the external ones. However, we will think here
that the connection of external and internal transformations is maintained also
under the local SL(2, C) transformations. Then it will not be necessary to regard a
priori @ as a mixed quantity of vector and spinor. Perhaps then, the gauge theory
of this type could be formulated as E-I theory in the flat spacetime background.
The purpose of this paper is to explore this possibility and show that it just leads
to the Einstein’s theory of gravity including the extension to the case that a matter
field is a spinor.

The presentation is divided into four parts.

In §2, we briefly review the concepts of a Lorentz, coordinate and spin basis,

respectively and the relations among them in a general spacetime manifold. In § 3,
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we consider the local SL(2, C) spin transformations and discuss the Lorentz-and
coordinate-basis transformations induced by them. There, the field h, will be
introduced. In §4, the invariant action under the local SL(2, C) transformations
will be presented in the viewpoint mentioned in § 3 and the final section is devoted

to conclusion.

§2 LORENTZ, COORDINATE AND SPIN BASIS

We assume that the spacetime continuum M is a Hausdorff, connected C> four-
dimensional manifold with affine connection and on which a local Minkowskian
structure is defined. It is well known that the local Minkowskian structure allows
us to introduce a spinor structure on M.

Let Tp be a tangent vector space at a point P on M and Tp* be its dual
space. And let (S2),, (S*2), (S2), and (S*2), be a two-dimensional symplectic
spinor space, its dual space and their complex-conjugate spaces respectively. We
can adopt such the bases E, (E#]) (#=0, 1, 2, 3) (called Lorentz bases) of Tp
(Tp*) as g(E*, E,)=7., g7(E*, E* )=7", where (7,,)=")=diag. (1, —1, —1,
—1), besides the coordinate bases® e,=(9,), [e’=(dx~),) for which g(e,, e.)=g,.,
g (e, e )=g": g,g%=0,. The g is a metric tensor defined over M and defines
at P an inner product g(u, v)=7,.u*v’ =g, uv for any u, ve=Tp, where u* and
u* are the components of u with respect to the bases E, and e, respectively, i.e.,
u=u"E,=uwe,. The g gives also a linear isomorphism of Tp onto Tp*, i.e, g:
u—u*=g(u, )<Tp* where u¥*=uE" =u.e"; u. =70, u,=g,u"

Then the g™ is the inverse of this linear isomorphism g and gives also a
bilinear map of Tp*x Tp* into R, i.e., if g71: u*, v¥ou=g i(u*, ), v=gi(v¥ ),
then g~'(u*, v¥*)=7"u,v.=gruv.=g(u, v).

On the other hand we can always choose such the bases wy [w*] (A=0, 1)
of (S2), [S*2),] as (@, @) =cap, € (@, @B)=c'B, e 3==0,90p1—0,10p9, *B:=75y"0,"
—01%00%; eape?t=0Yy. The ¢ is a spinor metric and defines at P an inner product

(P, ) =cin*PB for any é,¢p<Sp, where ¢ = ws.
The € gives also a linear isomorphism of (S;), into (S%;),, i.e., €: ¢—g* =
e(h, ), where g*=g.s@*; ¢ga=0%ps. The €7! is then the inverse of € and gives

also a bilinear map of (§%;),x (5%z), into C, ie., e71(@*, ¢*)=cBg dp=erp*PP=

* Notice that the existence of a local coordinate neighbourhood U with the local coordinates

xe (u=0, 1, 2, 3) is assumed at each point on M.
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e(g, ¢).

The complex-conjugates e_:ze;\éw;‘(i()m‘.’ and §‘1=e;"3m;\®mé play the same
role in the complex-conjugate spaces (Sz), and (S*:), respectively. Here and in
the following, we fix that the dotted indices denote the complex conjugates of the
corresponding undotted quantities.

We can construct the tensor product spaces of any types from the spaces Tp,

Tp*; (S2)p (S*2), and their conjugates;
T L= Tpo@Tp*®(S2),9(S%2),8"®(S2),9" Q) ($*2),®”,

S
where Tp?®r denotes Tp&yee+XTp.
No——— p——
r factors

We call an element of T 'Y og tensor-spinor of type (r,s; t,u; V> W).

s uw

It is well known that the tangent vector space Tp is topologically isomorphic
to the Hermitian product space (S2)»&u(Sz2)p.

We shall treat them as being identical in the following.

Thereby we shall be able to discuss a tensor-spinor in terms of its equivalent
spinor. We should stress here that the basis of Tp which is represented by it of
(52)»,&u(Sz), is a Lorentz basis, i.e.,

E, = 0.’ o Xo, , 2. 1)
where o,’s equal to the constant coefficient matrices of Dirac equations and satisfy

the relations
GL‘ABUi Ac +GLABUL’;\C =7w0 2. 2. 2)
On the other hand the relations between the other basis of Tp, such as a

coordinate basis, and the basis of (S2),&u(Sz), are given by

e,= 0 Mo Qs . 2. 3)
Here the matrix ¢~, is related to e, by
o .,=h",0,, o,=hso", (2. 4)

since the Lorentz basis E, is connected with the coordinate basis e, through “a field”
h,» (or h*,);

E.=hse., e.=h,E.. (2.5)
Owing to the eq. (2.2) we see then that ¢~,’s satisfy the relations

"wﬂ;\B‘f’*Ac +O¢”A'B"¢ﬂ}sc = gwle, (2. 6)
where g,..=g(e,, e.)=h* h* g(E;, E.)=h* h* 7;,,=h* h,.

We notice here the following.
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Owing to the relation (2.1) we can find the corresponding Lorentz basis
whenever we treat the SL(2,C) spin-basis transformation. Conversely, we can
always find the corresponding spin basis as long as we treat the only Lorentz-basis
transformation which satisfies g(E',, E,)=g(E, E.), i.e, a Lorentz transformation.
However, we can not find the spin-basis transformations corresponding to the
general transformations of a Lorentz basis. In this case the Lorentz basis is shifted
to one of coordinate bases. As a result, the relation (2.1) is broken and turned to
the relation (2. 3).

There, o”,’s are no longer constants and transformed under the spin- and/or
coordinate-basis transformations.

Now, we are in position to write down any tensor-spinor of type (r,s; t, u; \./, \.IV)

in terms of the equivalent spinor;

Tp=TABCme, o Jxe 5 @ Q0,00 Q0,&) Qo QO Yo Qar e

2r factors 2s factors
®w,®wx®"'®w“®w“®°--®w&®wa®'--®w*‘®ws®"° . (2.7)
. 4 . — N o N
g /7 N
t factors u factors v factors w factors
where
ABCDeesy o J Keee NQeess s
T E F G Heeo L Mese R Seee
e LRI e e e S T T (2. 8)
or
= T!“‘"‘bc".] K“.LM"-NQ'”;( ;."U”\/JABG""VC Deo OO"A'II'E Fa‘r‘é}{' .o
and conversely
Tex 2K I x LM--NQ RS
=TABE:D.“;5F6H---]K LM Ne RS ~‘7£A130'i D”'GiEFGE_GH'°'
or
Npeve 1K N
’I{W iK LM- 9 RS
=T ABQD-..}; F(.;ll"'J K.“LM---NQ“.;(;--'U'#ABUJDCJ b ceeg EF g, GHaeo (2 9)

§3. SL(2, C) TRANSFORMATIONS

Before going on, we need to make clear what the statement, “the spacetime
manifold M is flat” means in our case. We shall say so whenever we can find the

global® coordinate {x*} (called the Minkowski coordinate here) in terms of which
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the coordinate basis (0, = oxcr ) Is coincided with a Lorentz basis all over M.*

Let’s start on a discussion by assuming that the spacetime M is, at the outset,

flat. We shall therefore be able to find Minkowski coordinate x» such as
E, =0, throughout all points of M.
Owing to the relation (2. 1) the Lorentz basis {E.} is transformed under the
SL(2,C) spin-basis transformations
@'Aa=ws(S1)B, or @A=SAyw" 3. 1
like
E.,=E(L '), or E*=L~E", 3. 2)
where L#, is related to S4; by |
Le,=or ; SA.SE g,Ev (3. 3)
Of course, this is one of Lorentz transformations.
Then we shall also be able to find the new Minkowski coordinate {x’*} such as
E,=v, (3. 4)
throughout all points of M.
Here the new coordinate {x’*} is given in terms of the old {x#} by
X't =Lerxv. (3. 5)
Generally speaking, as long as we treat with the global** SL(2, C) spin-basis
transformations we shall always be able to find the corresponding Minkowski coor-
dinate in a flat spacetime.

On the contrary, when we treat with the “local” SL(2, C) spin-basis transfor-
mations, in which S*z depends explicitly upon the coordinates, then we shall no
longer be able to find the corresponding Minkowski coordinate. In this case, the
Lorentz basis is transformed like

E,.=E.(L7(x))",, (3. 6)
where L»,(x) is related to SAg(x) in the same way as (3.3):

La(x)=or ; S, (x)S° ,(X)a, B0, (3.7)
Consequently, the condition for a Lorentz basis

g(E,, E.)=g(E,, E.)=n,
is also valid as before.

However, we can no longer find the coordinate basis to be coincided with this

* It is always possible to find the coordinate basis coincided locally with a Lorentz basis.

** The terms “global” means SAg=const.
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Lorentz basis all over M.
According to our assumption, we conclude that the spacetime M is no longer
flat in this case.
We shall then have the following question.
“What does the Minkowski coordinate x* with which we started on our dis-
cussion become now ?”
Perhaps, we shall be able to answer this question in various ways. Nevertheless,
it seems to be most natural to consider that the Minkowski coordinate x# is
transformed like
x'r=Lr(x)x?, (3. 8)
corresponding to the transformation of a Lorentz basis. Therefore, we shall then
consider that a coordinate basis {9,} is transformed as follows;

9, ={Lr«(x), x* +L*.(x)}0", . (3.9)

Lastly, in order to use later we shall here give the infinitesimal forms of the
various equations obtained above.

First of all, let SAg=0%p+n*p, (3. 10)
where 7.5(=7 séca) is an infinitesimal parameter of SL(2,C) transformations and
symmetric in the indices A and B.

We then find

L#,=or, +or,,
where

wt, =78 ot }\BUL';‘“Jr?yAéo# :ABULE: B (3.12)
which is an infinitesimal skew-symmetric parameter of the Lorentz transformations.

Now, a coordinate basis 9, is infinitesimally transformed like

0, =0,—&, 01, (3. 13)
corresponding to the Lorentz basis {E,} which is;transformed like

E,.=E,—»".E,, (3. 14)
where £% is the variation of coordinates, that is,

i oxi=wl (X)X". (3. 15)

§4. THE ACTION PRINCIPLE

We consider a set of field variables qa(x), which we regard as the elements
of a column matrix q(x), with the Lagrangian

L(Q’ q!ﬁ’ X)’ (4' 1)
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where x# is, of course, a Minkowski coordinate.®
The action integral over an arbitrary spac:time region 3
I(Z)=f2L(x)d4x (4. 2)
is invariant under the following transformation

Xt — X't=XI - dX*

4 = q'(xX)=q(x)+q(x) (4. 3)
if

OL+L(0x#), ,=&*L+ (Loxr), ,=0 (4. 4)
at any spacetime points, where 0* means a substantial variation i.e.,

0*L=L"(x)-L(x)=6L—L, £OX~, (4. 5

Now, let us postulate that the action integral (4. 2) is invariant under the inhomo-
geneous Lorentz transformation ; **

OX* =wrx" +en,

8q=10"S,q. (4. 6)
Here @ and e are infinitesimal parameters of Poincaré group, and S, is the
representation matrix satisfying commutation rules appropriate to the generators
of the homogeneous Lorentz group, i.e.,

Sw=-S,,,

[Sus Sped=3f,.%,,S., 4. 7)

£utso = (818, = 8183 11+ (818 — 8185 )70+ (8185 — 3105 ), + (5155 — 8155 )1,,
In this case the condition (4. 4) reduces to dL=0, since (8x#), ,=wr,=0, and yields

the following 10 identities

oL

oxe =0 (4. 8)
oL oL

- 7a'a_slwq +7’aa:(smq’_1+7]1#q, »— 79, ﬁ) = Q%0 (4- 9)

(4. 8) stands for the requirement that L does not explicitly depend on x, as might
be expected from translational invariance.
Alternatively, we shall obtain the following equations to start with the 2nd of

eq. (4.4)
[Lja*q_ IM/‘U’ ﬁw“— T’ln ﬁ5u: 0) (4. 10)

* A Lorentz basis (or a spin basis) is not given explicitly in this section. But it should be
understood that a set of fields q is the set of their components with respect to a Lorentz
basis (or a spin basis).

** Of course, the Minkowskian property of the coordinate is also preserved under the inhomo-
geneous Lorentz transformation.
*** Note that 9/6q must be regarded as a row matrix.
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where

thg S",p + T*‘,,Xﬂ— Tﬂpxi,

oL
S vo == —'a‘quzsupq,
T aL "
T g, Qe (4. 11)

Then taking into account the field equation [L]=0, we obtain the following con-
servation laws
M+, =0, T»,, ,=0. (4. 12)
Next, let us consider the local SL(2,C) transformations from the viewpoint
discussed in the previous section.
In this case q and q,, are transformed like
0q = 30"*(X)Sasq (4. 13)
and
0q, «=(0a), v—<*, 105 2
=102 (X)S:.0, .+ 30*, (X)S1q—E% Qs 25 (4. 14)
respectively and then, we see that the condition (4.4) is no longer satisfied by the
original Lagrangian (4.1):
oL +L(ox"), ,=o*L+(Ldx"),,
—=[L]0*q — 30" M*as, ,— 3%, M¥ag
= —30%, Mr=x0.
Therefore we must look for a modified Lagrangian which makes the action integral
invariant.
It is natural to seek a invariant action in those form that
() = fIé’Dd*’x, (4. 15)
because dix is not a scalar under the transformations considered here. The condi-
tion (4.4) becomes now
oL/ =0, éD+ D3+, ,=0 (4. 16)
since Dd*x is a scalar.
Furthermore, we take note of the following.

We saw in the previous section that a nonflat spacetime is induced by the local

SL(2,C) transformations and we obtained there a coordinate basis which has the
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transformation rule (3. 13) besides a Lorentz basis. Now we shall be allowed for us to

introduce a field h,” (or hz,) here. Because we can find the field h,” as the inter-

mediate owing to (2. 5) whenever we have both a coordinate and a Lorentz basis.

The transformation properties of h,* (or h*,) are obtained by making use of
(3.13), (3. 14) and (2.5);
oh, = —aw*,h+&¥, 1h,2

or
he ,=whi ,—€1 by, . (4. 17)
Taking into account this note, we could assume the invariant Lagrangian L’ as
follows :
L'=L"(aq, q, ., h,, h,», )%, % (4. 18)
Then, from the invariance postulate we get the following identity :

9 5 oL/ 5
LG :‘25q+ aqL 00t ahL v OB+ ahL OBt 2= 0.

Inserting (4. 13), (4.14) and (4.17) into the above, and taking account of the
arbitrariness of choosing w#, w3, @, ;. and the fact that it must be valid at any
points of M, we are led to the following various identities

oL’ oL/ oL/

bq,, Sesl + 50 '*'hm”—‘aifpujhm" =0, (4. 19)
oL’ oL/ oL’ oL’ oL/
g Sapd +—5"— aq, . A —Sapd, ot ohe hyr— o h,”+- ha, —hgt,
aﬁgr hat 3= 0, (4. 20)
oL’ oL’ oL/ oL/
9, » '« ohre = Gpe b *ohn, =0, (4. 21)
ngr?:hru%g};mhrw —0, (4. 22)

where hels=ypash,»,

Here we should stress that these results agree with those ones that are
treated as if «* and &* are independent parameters. Consequently, our final results
will be also invariant under the general coordinate transformations.

Now, we see at once that from (4.22), h,’,; should be contained in L’ only
through the combination

Cért = he#, hty(hr7e; —87her), (4. 23)

where we should note the relations***
* From the invariance requirements L’ needs to depend upon h,, as well as h,
** Here and in the following, the notations h,», hv', are used for h,», hv , respectively.

*** Because h,, is a inverse of heu»,
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heth,, = 0, hah#2=0% . (4. 24)
Therefore we put
L'(Cl, 4, hy h’ y):L”(q, 4, o h9 C)
Then (4.19), (4.20) and (4. 21) are rewritten respectively as follows;
1 oL” oL” oL’
2 aq h'}\ySaﬂq + aCa,lu - "a'cﬁjg"’:’ ’ (4‘ 25)
aL// OL// L/I /
2( St oy Sesd )+ e b aca Car2 Cm < Cey
—{a and B interchanged} =0 (4. 26)
and
aLII aL/I o
aq, , «— gpra W =0 (4. 27)

From (4.27) we see at once that h,* and q, should be contained in L/ through

the combination

q. == h.fq, ;. (4. 28)
Therefore, we put furthermore

L”(q, 4, » b, C) =L"(a A C-

Then (4.25) and (4.26) are rewritten again as

1 QLNI aL/// oL’ -
o oq, TSt GCas T CHE (4. 29
and
1 aL/H aL///
2 { 6q S“ﬂQ+ aq (Saﬁqs+ naquﬂ'—ﬂﬁgq‘a>}
+';%g;C +2 aé‘w, Céy—{a and B interchanged} = 0. (4. 30)

(4.29) shows that L’ should depend upon d. and Cé7¢ through the combination

q,=q.+ 3} A*Su.q,

where
A“;:Z % (Ceu +C;15 "‘C“E)'ﬂse
= % CEAK"*"C”.&—_CA‘E) (4. 32)

Therefore, if we put®
L’”(q) qW ’ C)——:'L(q) q;,u)’

We shall find again (4. 9) with q,, in place of q,,.:

oL oL
S,uv -+ (S,wq;x%-n,#q.,y—r;”q;y) ===

oq 4.2
In fact, (4 30) is just rewritten into this form by noting the relations

is assumed to be &, w

* I‘hls choxce is due to the requlrement that when the ﬁeld hLtl
This requirement also, at the same time, implies that

have the original action integral.

D is unity in the case.



120 Shin-ich NAKARIKT

oLm _ oL oL

e . 1 ix
aq oq " aq, AS.,
aL/// aL
BCar “aa# 1 (nff‘SW + Wrﬂsvf _777FST€>q’
aL/// L 6L
aq, 9q;,

Thus we have obtained the required Lagrangian but not yet the invariant action.
In order to obtain the invariant action it is sufficient to notice that vV —g is
transformed like
O —g=—/—gén, ,, (4. 33)
where g=det(g,w)=det(77"ﬂha,,,h,g,,). Consequently, we can choose /—g for D.
Next, let us investigate the possible type of the invariant Lagrangian for the
free h-field.
First of all, we must assume the invariant form as follows :
Lo(h,’, h,», h,», 2. )%,

From the invariance postulate we obtain the following identitieg**

"aqlfr?ﬂ,,jh’u * g}%“*’ﬁ‘*‘"”* 'gf{'“r?/{;gh"“f 0, (4. 34)
g}%ﬁ‘hﬂ'" 51{3?;;;; h.r=o, (4, 35)
S, b o
+o( Gt Jhe b= St —hre, ) =o, (4. 36)
gll;fo"? hm+"gll1‘?lﬂ:h’uw‘%}%7;h””#’
b - By, =0, (4. 37)
*glll%r’:hﬂ'r_—%’?[az-h”r+2<%?7,1;h‘9‘7’"_ "éa#?}::h"'r’“ ) =90 (4. 38)
and
g)}%’?ﬁ“hﬂ«" + -g}I;‘;‘m”-hm/‘w%i,‘,’mh,sw, «—{7 and B interchanged}= g. (4. 39)

After the tedious calculations, from (4. 34), (4. 35) and (4. 38) we see that

h,*, ; should be contained in L, through the combination**#

* The invariant Lagrangian which is independent on the 2nd derivatives of h,» does not
exist. This can be seen to note that (4,§38) and (4.39) together with dLo/6h, >, ;. =0
are not satisfied at the same time.

** The note to follow (4. 22) holds also for these identities.

*** Note A& =A¢rhe,
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F#l,, =A%, ,— A%, . — A AW, 4+ A% A, . (4. 40)
Therefore, let’s put

Lo(h, h,,, h, ,)=Loy(h, F)
and investigate the remainders (4. 37) and (4. 39).

From (4. 37) it is easy to see that h,* and F#/, must be contained in Ly

through the combination

R#7, p=F%l, h,hye. (4. 41)
Then (4. 39) can be rewritten in terms of R as

oL . . . .
7;7R‘;«;&-” {0;R57:c + 'R 5i+ 71, R75+7,Ré7;5;— (B and v interchanged)}= 0.

(4. 42)

In order to look for the explicit R-dependence of L, we attend to the transforma-
tion property of R. This is given by

SR, s=wf Rr7,3+07, R s—oi R, ;—w R, , (4. 43)
since A*, is transformed like

SAM, =wt A w0 A, — 5, AN, —0kF, (4. 44)
Then, comparing (4.43) with the expression {+e¢} on the left-hand side of (4.42)
we shall find at once that (4. 42) is written like

oL,

OR¢x,, OR3 = 0.

This shows that L, can be the arbitrary invariant function of Ré¢;, .

§5. CONCLUSION

We have seen in the preceding sections that the invariant action under the
local SL(2,C) transformations is written in perfect form as
I = d*x, .
(2= [ Ladex (5. 1)
where
LTE\/—:g{L<Q) Q;,u)+L0(R)}7
a;.=h,*V.q,
vquq’ v é A“lvsqus
Aix\ﬂ — { gy}h)?"hr,@_*_hllahx\n’ P
{5} =the Christoffel symbol of the 2nd kind,

and Lo(R) is an arbitrary invariant function to be made out of Ré7,, .

Now, let us make the suitable choice for the matter field Lagrangian L and
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choose a particular Lagrangian® for L,
Lo=R=R¢,,.

Then taking a variation of (5.1) with respect to the field h,* we shall find
the Einstein’s gravitational field equations extended so as to be able to include a
spinor.®  That it is so is obtained from the fact that R is just equal to the Riemann
scalar, because

R=R¢7,=R"4,,,
where
R0 =F%l.,heoh,s=R¢1 ;he*h, ;hil hel,
= {geho—{mbe =L HATFLA)S

wihch is just the Riemann curvature tensor.

* In more general we can also choose the Lagrangian L, so as to contain the quadratic
terms in Ré7.,.9?
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