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ABSTRACT

The finite temperature Schwinger model in a background 1-1 de Sitter space is
studied. We take account of the curvature effect on the two point Green’s function
in a short distance. It is shown that the massless and massive boson excitations

can not be decoupled and have the interactions through the de Sitter curvature.

1. INTRODUCTION

Recently there has been much interest in the study of the Schwinger model'
in curved space-time. This interest originates primarily from an exact solvability
of the model in flat space-time which might render help to attack almost unsol-
vable problems in curved space-time.

The purpose of this work is to discuss thermodynamical properties of the
Schwinger model in a background 1-1 de Sitter space. Love? has calculated the
finite temperature fermion Green’s function in flat space-time and showed that the
theory is equivalent to an ensemble of noninteracting, neutral, massive, Bose par-
ticles, and thus the particle content is identical to that obtained at zero tempera-
ture3-4. It is believed that in curved space-time, curvature affects thermodynamical
properties of an ensemble of particles. This is very interesting but difficult enough
to get something concrete in general case.

We take the Schwinger model in a 1-1 de Sitter space, because this space-time
structure has the wellknown simple global symmetry very similar to the Lorentz

symmetry. This space is asymptotically flat near the origin and all world points
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are equivalent because of the de Sitter symmetry. Therefore, a short distance
two-point function may be evaluated in an approximately flat region around the de
Sitter origin.

Gass’ set up and solved the equations for the Green’s functions in curved 1-1
space which follows closely Brown’s flat space-time ones®. Unfortunately, the solu-
tions are too complicated to be analytically managed. In this work, the finite-
temperature Green’s function at the points near the de Sitter origin will be evaluated
by making use of Gass’ solutions, and so the ensemble average of the Hamiltonian
density will be given in 2nd order approximation of a™ (a=de Sitter radius) ex-
pansion.

In Sec. 2 we outline the basic model. In Sec. 3 we present the finite-temperature
Green’s function (two-point) and discuss the ensemble average of the Hamiltonian

density.

2. THE MODEL

At first, we review briefly the geometry of a two-dimensional de Sitter space.
This will also allow us to introduce some notations.

The metric is given by

dst=(1—-"drr— (1— T2y gy, (1)
a a
where —oo<{t=Coo, —co<lr<co (0=r=-co in the 2-dim. case reduced from 4-dim.).
This metric has a singularity at the de Sitter event horizon |r|=a. In the limit
of a—oo, the space becomes a two-dimensional Minkowski space.

By using the “Kruskal type” (U, V) coordinates specified in Appendix A, we
show the Kruskal diagram of 1-1 de Sitter space in Fig. 1. In this representation
the apparent singularity at 7] =a is removed. In Fig. 1, null geodesics are at
+45° to the vertical. An emitted photon from any world point in the interior
region (I) (|r|<<a) takes infinite time to reach the future horizon which is defined
by the straight line U=V. Note that the metric tensor does not satisfy the Einstein
field equation R#=342g» in contrast with the four dimensional case, since the scalar
curvature is R=2/a? as shown in Appendix B.

Because of the event horizon, we consider the equations only in the interior
region (I). The Lagrangian density of the Schwinger model in a 1-1 de Sitter

space is given by
L=y YT PPt ey (g A — L (7,07, (2)

where \/, is the covariant derivative, F,,=</,A,—</,A,, and the 1/B term is a
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S V(t=0)

Uit=4¢)

Fig. 1.: Kruskal diagram
Region (I) and (II) are interior regions.
Region (III) and (IV) are exterior regions.
The dashed curves are hyperbolas of r=0.
The solid curves are hyperbolas of r— +oo.

The solid lines V=U and V=—U are the future and past event

horizon respectively.
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gauge-fixing term. With our conventions x°=¢, x!=r, the natural unit % =c=1 is

used. The curved space-time 7,.(xr) matices satisfy the commutation relation

{y"(x), v (x)}=2g"(x).

(3)

The explicit representations of y,(x)’s, 1-1 de Sitter space “zweibein”, and other

relevant quantities are given in Appendix C.
From the Lagrangian (2) follow the field equations
iy (x){Va—ieA.(x) }P(x) =0,

and

in which
J#(x)=P(x)v*(x)¢p(2),
is the fermion current with ¢=¢tyo,

The current conservation equation is

Vi (x)=0.
The anticommutation relation between ¢ and ¢ is defined by
— 082 —
B(n + (=2 D), F(a))= T EF),
v—g

where » is a time like unit vector lying in the forward light cone.

(4)

(5)

(6)

(7)

(8)
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The equation (5) is reduced to

gF o ]
S =e(r, . (9)
The solution is given by
Foi= —¢d, f “dr D(r, v, D, D), (10)
where D(r, r’, t) satisfies
— 4 gL yDer r, =50-r. an

The solution to the equation (11) is

n.(e=r)(a+r)
(a+r)(a—T1")
(a+r)(a—1")

“la—ratry 7T

, r<<r’

D(r, )= (12)

e
4
2
4
Note that for a—c and |r|, || =0, D(r, r’)—>—%|r—r’| which is the correct flat
space-time result.

By usual definition, the Hamiltonian is
H={"ara, (13)

with the Hamiltonian density

_ B84 i~
A —WVOJJ—L%“'Q"SL'Z”VM ) (14)

in which = (7%, —y").

3. THE FINITE-TEMPERATURE GREEN'S FUNCTIONS AND THE
ENSEMBLE AVERAGE OF THE HAMILTONIAN DENSITY
Here, we follow Gass’ formal expressions®. The two-points Green’s function :
G(z1, 22)=<0|T[¢(z1), $(x2)]10> (15)
satisfies the equation
(2 V 1G (21, 12) = 0% (x1—22) — " (21){V ,“1H(x1, 22) }G (1, x2)
+y* (2D {V “1F (21, 22) }G (21, 22), (16)

where
F(xy, 22)= iez[’z‘(xl)]1Vx$1Vf2fd22A+(-’CI_Z; 0)70(2)
x f iady‘[:/“(y)z"(y)]zD(z‘, ZANG e T f;—)

—the same term with x;=ux2, an

and
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H(an, 20) = iety (@) V.05 [ dzn, (a2 0) [ dyDGty 3

2

X [7e() LY (M7 (NI AL (3 =24 03 7))

—the same term with z;=x.. (18)
In F(x1,x2) and H( x4, x2), the short-hand notation ri<o|T(¢P) |10>=<<0|TT'¢)$|0>
and T',<<0|T($P)|0>=<0|T(¢(I'$))| 0>, where I' is a combination of 7 matrices,
is used.

A+(x—y; p?) is defined by

(O + e As(x—y; p2) =8 (x—y), (19)
with the curved space D’Alembertian

O =g V.V (20)
The solution to the equation (16) solved by Gass is

G(xy, 22) =exp{F(x1, x2) —H(x1, x22) }Go( 11, x2), (21)
where

Goan, ) = (1= 0% ) a1 25y 3Gy (a, 2). (22)

Setting x.=0 and x,=x, we have

. T flat _ iytx,
1:213 Go(x, 0) I;T_T)}’ Go''*!(x, 0) owx®” (23)

At finite temperature, the prescription is to replace the vacuum expectation value
with the ensemble average. For instance we replace G(zi, 22) with the ensemble
average G(zi, x2) o =<<T($(21)¢(x2))> . For any operator A, the canonical
ensemble average is defined by

<A> oy =(Tr e#1)'Tr e " A, (24)
where B=1/(kT), and H is the Hamiltonian. Tr in this expression dictates a sum
over a complete set of states of the syetem.

Noticing the time-translational invariance in a short distance near the de Sitter
origin, we assume the Heisenberg equation of motion

A(r, t)=e"tA(r, 0)e” 1. (25)
The Heisenberg equation of motion and the cyclic property of the trace yields the
symmetry condition

<A(r, t)B(r', t')> y =<<B(r, V)A(r, t +iB)> (1) (26)
which holds for all operators A and B. With the aid of this periodic condition, the

ensemble average of the operator product is obtained as

2
<A(x)B(2)> = f{;;k)—ze”‘ e ﬁlieféf)—fékbf}' , 27
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- where the minus (plus) sign in the denominator on the right-hand side corresponds
to the Fourier transfom g(%) which associates with the commutator (anticommu-

tator)
’ — d?k ik (z—x7)
<[A(.‘L‘), B(x )]x>(T) - (271.)2 € g(k) (28)

In the equations (27), (28) and the following, the notation [dk,/2mr means a/”k%)
with ki(n)=mn/a (n=0, +1, +2, ---), because the de Sitter space is bounded by tlhe
event horizon at |r|=a.

The temperature Green’s function satisfies the equation being the finite-
temperature version of the equation (16)

Y(2IV.G(2, 0) vy =8%(x) —y*(2){V,H(z, 0) ) }G(z, 0)

T (@ F(Z, 0) a5 }G (2, 0) aay - (29)
The solution to the equation (29) is expressed as
G(z, 0) vy =exp{F(z, 0) ay —H(x, 0) > }Go(2, 0) cr . (30)
Here, Go(z, 0) ¢r, is a free massless fermion Green’s function satisfying |
742)VGo(x, 0) y =82(2), €29)

with finite-temperature boundary conditions.
F(z,0) ¢y and H(x, 0) , are defined by (17) and (18) except that the zero
temperature function A,(x; ¢2) is replaced by its finite-temperature version

AN(x; #?) vy, which satisfies

2
E+EDA; 1) ey =4 [ Th ety (k1) ey =32,
In the limit r—0, we have
'S( B2 — 12
Dok 1) vy = g+ OB (32)
M expip(e )ty -1
and also
2
Go(, 0) cr> = =i [ 2K exp(ibe)rkaGolh) crs (33)
in which
S S 2mio(k?)
Go(k) v = k2—i&  exp{Blki|}+1" (34)

Using the equation (14) and the definition of the two-point temperature Green’s

function, the ensemble average of % is given by

<H>ay = lim Tr 3+7,G(z, 0) o> (35)

T ->+0

Here the limiting procedure x—+0 dictates taking the limit +—0 following by r—o0.

We expand exp{F(x, 0) ¢y —H(z, 0) & } in the solution G(z, 0) ¢y for x. Taking
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into account of the limiting property of lim F(x, 0) v, and lim H(z, 0) v, shown
T >+0

&£-> 40

later on, we find

<H>ay = L lim Tr 777,Go(z, 0) cry

o>t
+ 3 lim Tr 57,([F(2, 0) @, —H(2, 0) ry 1Go(x.0) ). (36)

The first term is the ensemble average of the free fermion field Hamiltonian
density << H> 4.

The curved space-time y#(x) is defined by

yi(x)=a".(x)7",

where zweibein a*,(x) and 4*,(x) are given in Appendix C.

We now consider the 2nd order approximations of a™! expansion of <<%>> (ry.

In this approximation, we assume

1 r? 1 r
o 1+ 5 g 0 b 1=, 0
) o i) o 1+l
2 a? 2 a?
and
2 2
-7, 0 1+, 0
ped HY ~—
g/lv r2 ’ g rz
0 —(1+ ) 0 (=)

The Fourier transforms of 4°%(r) and g°(r) which are relevant to <<%> 4, are

represented as

Bo0(ka) =/ 285,50 — 1 (k) (37)
and
g%(ka) =+/2ad_,0 +0(kz), (38)
with
4a(—1)"
kn) = - L
(GO (39)
The D(r) defined by (12) can be relaced by the flat space-time expression
D(r)z-—é[rl. The Fourier transform of D(r) is
{1—(—1)"}a?
D(k)= S .
() V' 2a(aky,)? (40)
In term of Fourier transforms, we obtain
2 2)/
F(z, 0) ary = ieara(a) [ 4085 @k, (k5 0) o A K 5 1)

< 6(ko—ko)exp(ikx)
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X {ark16% (k1 — k1) D(R'1) + @k, ﬁ'ﬁ b%(ki—D)D()g%(l—Fk1)}
2T

—the same term with =0, 4D
and
H(zx, 0) «y = i€?a%(x) %;U)QTIAAO, k15 0) vy D(K'1)6%(k1)
X A0, k15 12) 1y k% exp(kix?)
—the same term with x=0, (42)
where

ar= 7(170.
The x—+0 limit is given by
d2kd?k

ii_f}}roF(x, 0) (> = 1é? T (2n)? @ka N+ (R 0) ory AL (R 2 U2) (ry
X {atk'165(ky— k') D(E'1) + aky ‘215[ by(ki—1) DD g (l—Fk1)}
X 8(ky— ko) EES 41)
and
lim H(x, 0) (ry = ie? *%’k'z}gg%k12A+(0, ki;0) oy ANCO, B 2) oy
T->+0
2
x D(k) buChr) 2 (42)
respectively.

If we replace 6%(k:) and g%(k,) with their a—cc limit &(%4;), the equations
(41) and (42’) reduce to the flat space-time expressions.

We can separate <<4(> (r, into two parts, i.e.,
<H> py = <HASEGDI+<A>R, (43)

here <<#>¢5>> is the curvature independent (flat space-time) ensemble average

which has been obtained by Love2.
<4>) is the curvature dependent correction term which is expressed as

d2kd2k
(27T)3—A+<k 5 0) >y AR p12) oy 6Cko— ko) o?

X a(ki— k1) { D(k1) k12— D(k'1)k:1k'1) } (44)

. 2
camg-

. e?
2 -7
with p .

On substituting the explicit expression A,(%; #2) «ry (Eq. (32)) in (44) and

integrating for k£, and %, we find

@ _ M f | 2mi
<:_g¢> [¢») - 4<27r)3 dkdk[:klz"‘kz"—[uz—ie



THERMODYNAMICS OF THE SCHWINGER MODEL 105

« { Bty k| \_}
exp{Bvki+ut}—1 = exp{Blk|}—1

T TR (exp(BIR )~ 1)(exp(By/ B8] 1)
X U(k—k’){D(k’)k'zﬁD(k)k/e’}
S i f ap SV R+ 2 —k) {‘PQ,\LE@;(ETEZ) — D(k)kr/ b2+ p2)
8T exp{Bv/ k2 + 2} — |

oV + 12— k) D(\/ k?+ pe2)
8 <1 * exp{B\v/k2+ 2} —1 )

(45)

Alternatively, changing a temporary notation of f;% o(k) and D(k) for Tar X,

o(ks) (Eq. (39)) and D(k.) (Eq. (40)), :
=S T etk 1 el T OO

After combining all pieces the ensemble average is
T 0 B AT R (e i
Rz 47r‘za<ex§{;<ﬁ;1:3’iﬁ —1pe S

Here we have explicitly written only the finite-temperature modification. In this
expression, the second term is the flat space-time average and the third term is the
curvature correction, finally the fourth term represents the correlation between the
massless and massive boson excitations.

If the universe has the de Sitter metric, “a” may be of the order of 2x 1010
light-years at the present stage of the universe. Then the curvature correction term

is completely negligible. In the early universe which could have the curvature of

411 ==p, however, we may expect that the curvature affects the thermodynamical

ensemble average.
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Appendix A: TWO-DIMENSIONAL de SITTER SPACE
IN “KRUSKAL TYPE” COORDINATES
| Interior Exterior ‘ Interior Exterior
Region i region (I) region (II) | region (III) region (IV)
| TH=eT Az = GED
S “Mi ‘ 7 % o P S R
1 Uu | ‘/ - cosht \ ‘/r—@ sinh’ | W}/;‘?j[ cosh’ ! ~‘/ r—a& ginh'!
\ a r+a “ a+ a \ r+a
Q ! a—r T ¢ _ r—
e \% \ / a-r smht ‘ ‘/,Lf, cosh’ ‘ —/ 2=7 ginh? —/ T cosh?
&a ‘ a+r r+ a a+r a ‘ r+
ot g p— I
2 | | | |
3§ P U+V ‘ exp(u/a) \ exp(u/a) | —exp(u/a) —exp(u/a)
28 | | |
"' e - | : - ‘ - e |
| U-V ‘ exp(—v/a) 1 —exp(—v/a) ‘ —exp(—v/a) exp(—v/a)
[ S O B J;m, B
Equati |
quation i 2_vye— &7
for r=const. | vz-v a+r
‘, N S S — [ —
Equation ‘ _ t _ ¢ B t | _ ¢
for {—const. \‘ V/U = tanha » V/U = cotha | V/U= tanha | V/U = cotha—
S S R _ L I
“Tortoise” L ok a a—r | %_ @ r—a x_a a—r x_ G r—a
coordinates , re=sn \| r="In g e EL A Sy
2 u ) tHr¥
=
- e
o 1
ek | .
Z 8 v \‘ t—r
R [ e _ S
ffég Null \ ds?=(1—r2/a?) du dv
12 — N - U —
08 | ,
= 2 _ a ] 2_JU2
E28 | Kruskal dr=[ B ) @dve-dun
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Appendix B: AFFINE CONNECTIONS AND CURVATURE TENSORS
OF TWO-DIMENSIONAL de SITTER SPACE

Coordinates (r, t) coordinates ‘ (U, V) coordinates
| (1—12/a?) [ ]2 1 0
|
IR G _<1_,2/a2> oyl lo -
Metric | — — .
| [(1"r2/az) ! 0 ] 1+U2_V2] [ O]
| ) .0 —-r2/an) € 2a 0 —1
Affine connection ri, ;g‘-‘(g,,m+gm,,—g,w,=)
‘ r _
T8 =TY =, 0—r2/at)™ r§, =re, oV
L . 1+ U2—
m ) :Fol
Nonzero affine 1 A 2 B B R
connections Too a2 (1—72/a?)
B I, =r', U
7 _ 1+U2—V2
' = L G=r2/a®)7 —r1,
Riemann-Christoffel | po \ re _pe v e —poore
curvature tensor ‘ JLAY 1Ay a7y ni av ny s
| R

Ricci tensor ‘\ R/w npy

Scalar curvature | R i gRun=2/a?
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Appendix C: ZWEIBEIN COMPONENTS AND COVARIANT DERIVATIVE
Coordinates | (r, t) coordinates ! (U, V) coordinates

Two-dimensional J

‘J 1_+_ U2 V2 [1 0]
0 1

!

1 0
( 1+U2 V2 [0 1]

"1'+_W 1 0

tive of ¢(x)

1 0
Mmkowsk1 space Nab [
time metric 0 —1
" Relation between o e
Minkowski space = al a?
metric and curved | Vap=8umly a4y
_space-time metric | o
. |
Two-dimensional | (l_rZ/az) 1/2 0
de Sitter space ‘7 al, [ ] "
Zweibein ] (1—rz/az)‘/2
Inverse matrix pa ’ (1_r2/a2)1/z 0 e
of at ’ f Qerz/aryne)
20 | [1 0]
; 0 —1
Flat space-time . | [0 1
: Y
Y matrices _
1 0
75——7071 ‘ [0 1]
1 0
" Relation between |
flat space-time v, —pa
and curved space- Yu(2)=b(x) 7a
_time 7,(z) R
(1_;~2/a2)1/2 0 ‘[
Coy
! 20 ‘ 0 _(1_r2/a2)—1/2 | 20
7.(x) matrix forms ‘ 0 ~(1-7r2/a2)"1/2
of two-dimensional Y1 [ :’ Y1
de Sitter space P | (1-r2/a%)~1/2 0 -
| Y
i 0 —1
Y5=7s5 . 7s
; -1 0 -
Covariant deriva- | .
tive of v,.(x) v | Viur(x) [ G,Q'y(x)—l“m () + [7.(2),
L - i . o
Deffinition of ! | 1
spinorial affine L r(x) | Ya7eb}(x) gio(x)V ,b%(z)
connection I',(z) | 4
Covariant deriva- | i T
a i a
tive of Zweibein bl‘f | Vb, (x)‘ 8,65 (2)— r,, bz
—— ] S
| |
Spinorial affine | ro(z) | 7
H 2
connection com- | 1 2a
ponents of two- — R S
dimensional de ! [
Sitter space | I'i(x) f 0
| !
Covariant deriva-
V() —I(2) }(2)




