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Abstract

There has been an increasing interest among some physicists in the mathemati-
cal theory of octonions, especially in their algebraic characters which are closely
related to the quark model. Octonions obey neither the commutative nor the associa-
tive laws and was thought that the theory of functions of an octonion variable may
differ greatly from that of a complex variable and that of a quaternion variable.
However, Dentoni and Sce have shown that the theorems and the methods in the
theory of functions of a quaternion variable can be extended to that of an octonion
variable. In this paper we describe the results obtained by Dentoni and Sce in a
more general form, and develop the theory of regular polynomial functions of an
octonion variable which are an extension of Fueter’s polynomials in the quaternion

theory.

1. Introduction.

The discovery of octonions was made by Cayley > and independently by
Graves @, immediately after Hamilton’s discovery of quaternions® . The algebraic
theory of octonions, which is called Cayley algebra, assumes neither the commuta-
tive law nor the associative law, i.e.,

AB > BA and (AB)C=2: A(BC),
where A, B, C are octonions. The theory of functions of a quaternion variable was
developed by Fueter @, but it had been thought that the theory of functions of an
octonion variable would be quite different from that of a quaternion variable, because
of the violation of the associative law in octonions. There has been an increasing

interest among some physicists in the theory of octonions; especially the algebra
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of octonions which comprises the quark structure; see Gunaydin, Gursey, Tze,
Okubo and Morita®. In the same year Dentoni and Sce ® developed the theory
of functions of an octonion variable in a similar manner to that of a quaternion
variable. Since the theory of functions of a complex-quaternion variable comprises
the theory of electromagnetic fields > we might expect that the theory of functions
of an octonion variable comprises not only the algebraic aspects but also the dy-
namical aspects of the quark theory. For this purpose we need to extend the theory
of functions of an octonion variable to that of a complex octonions (split octonions),

just as in the case of the emergence of Maxwell’s theory from the theory of func-
tions of a complex quaternion variable.

In this paper, as a first step in the development of the theory, we briefly
describe the theory of Dentoni and Sce in a more general form and introduce the
regular polynomial functions of an octonion variable in a similar manner to that of
a biquaternion variable ¢,

The contents of the paper are as follows: —

In section 2, we briefly look at the algebra of octonions and introduce the notation.
In section 3, we discuss the regularity condition for a function of an octonion vari-
able. In section 4, we look at functional derivatives and study the regularity con-
ditions in a functional form. In section 5, we construct a regular function. In
section 6, we derive the theorem of residues and in section 7 we introduce regular

polynomial functions of an octonion variable.

2. Algebra of octonions (Cayley algebra).
An eight-dimensional Cayley-Graves algebra of octonions, O, is a direct sum of

two copies of quaternions, Q®, i.e.,

(1) 0=Q46Q

An octonion ¢ is defined by a pair of quaternions, Q; and Q; as

(2) c=(0Q1 Q2), Qi Le=Q.

The addition and the multiplication of two octonions, ¢ = (Qi, Qz) and ¢’=(Qy, Q’z),
are defined as follows:

(3)  c+c'=(Qy Q)+ (Qy, Q)=(Q+Q), Q'+Q2),

(4)  c'=(Qs QD(QY, Q) =(Q:Qy— 02 Q2 a0y +Q2'Qu),

where Q’; and Q are the conjugates of Qy and Q, respectively ® . In equation
(4) one should keep in mind that all the Q’s are quaternions so that their products

are noncommutative, i.e., Q:Qy > Q1'Q;, and so on. Using the definitions (2) and
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(4) we now define the basis of O by
( 8 ) 12(19 0)) i1:<i11 0)9 i2:(i2) 0)’ i31:(i31 0),
i4:(01 1)’ i5:(0) il)) iﬁz(oy i2)9 i7=<01 i3)'

(*) A quaternion Q is defined as
(5) Q=qgo+q1t1+qaiz+qats,

95

where 1, ¢, iz, 73 form the basis of Q and satisfy the following relations:

(6) li1=1ls=13l3=—1, iilz= —1i201=13,
i2i3= —i3i2=i1 , 2.31.1: —iliaziz.

The conjugate quaternion, Q, of a quaternion, Q, is defined as

(7) Q = go—qii1—qziz—qsis

One can easily show from (4) and (6) that

(9) P 2= = eeeees =i = —1,
(10) txtit+i i =0, for lﬁek, l,kﬁ?o
where [ and £ take any value 1,2, ...... 7.

The multiplication table is as follows.

Table 1.

AB=c¢
B= 1 i i is i is ie
.42 1 1 i1 iz 1377 7;;7777 ls lg
R L o O "
iz i —ig -1 in e iq —is
13 i3 ‘ ig —1, —1 i7 —1ig is
i i —is 0 o—is | o—ir =1 =i 0 i
is is s —ir i i 1 iy
ie 16 i7 ' i47 : —i; —i i3 —1
iy fr . —is | ds  ds  —ia  —ip i

i7
i7
ig
—is
—is
i3
ig

—1i,

From the multiplication table one can easily see that in general the associative law

does not hold, i.e.,

(12) (cc’)e” > c(c’¢”), for ¢, ¢/, ¢/ = O.

To characterize this non-associativity one defines an associator (¢, ¢’, ¢”’) by

(13) (cc’)e”—c(c’¢”) = (¢, ¢, ).
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Then the following identities hold.
(14) (e, ¢/, ¢")=(c, ¢",¢c)=(",¢, ¢)=—(c, ¢ "),
and thus,
(15) (¢, ¢, ¢’) =0.
To avoid any ambiguity in the order of multiplication, parentheses will be used to
indicate the order. However, no such ambiguity will arise concerning the product
of two quantities, each of which is a quantity raised to different powers, i.e.,

Ar=(A" D A=((A*2)A) A=+ =AA- A

n times
=(AA" 1)) =A(A(A2))=A"T"(A") .

More generally, one can show that for two arbitrary octonions A and B,
(16) Al(A"B)=A(A'*m"1 B),
and
(17) A'BA"=(A'B)A"=A(BA™)=A""(A"BAs)A™",

for any [, m, r, s€Z™.

For any octonion C=co+ciiy+ -+ +¢7i;=(C4,C;) the conjugate octonion, C, is
defined as
(18) T = co—cgr—r-—crir =(Ci, —Co).

Then it follows that
(19) C,C: =C. C.
The norm of an octonion C is defined as

(20) n(C) = CC = CC = c2+ci2+ -+ +Cy2.

3. The regularity conditions.

We now look at the regularity of a function of an octonion variable as discussed
in Dentoni and Sce ®,

Define a differential operator, D, by

. 0
21 D = R aad
(2L) F§O L oz,

Then a function, F(X), of an octonion variable, X = ,,éi" x,, is left regular at X
if and only if F(X) satisfies the condition

(22) DF(X)=0.

Similarly, a function, G(X), is right regular if and only if

(23) G(X)D=0.

Writing the functions in components,
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(24) F(X): fo+f1i1+ """ +f7i1 ,
G(X)=go+g1i1+ """ +g-,i7,
where f, and g, are real smooth (twice differentiable) functions of x, (=0, 1, ...

...7), the above regularity conditions (22) and (23) take the following form.

(25)  DF= (Go+ kz‘, ix 36 fot 2 is fo)
=1 Jj=0

7 7 A@,1
= aofo——k;lakfk+El(aofwakfb)ik + ; )(a,,fv—a,f,,)i,,,

(e>v.0

where the summation :2}%:: is taken over all g, v, p=1,2,...... ,7, and g, v, p satisfy
the relation, i{,=1,,, p>>v. Writing equation (25) componentwise,
(25)  DF=0o fo— 01 1—02 fo— 03 fa— 04 fa—0s fs— 06 fs— 07 f1
+ (90 f1+ 01 fo+02 f3—03 fo—04 f5+05 f4—06 f1+07 fo)ia
+ (00 f2—01 f3+02 fo+03 f1+04 fo+0s fr—0g f1—07 f5)i2
+ (0o f3+01 f2—0z f +03 fo+04 fr—05 fo+0¢ f5—07 fu)is
+ (00 fa—0y fs—02 f5—03 f7+04 fo—0s f1—0g f2+07 f3)is
+ (09 fs+01 f4—0z f1+03 fo—04 f1+0s fo—0g f3+07 f2)is
+ (0p fo+01 f7+0, f4—03 f5—04 fo+05 fa-+0g fo—07 f1)ie
+ (B0 f7—01 fo+02 fs+03 fu—04 f3—0s f2+04 f1+07 fo)iz .
We now proceed to integrate the right hand side of equation (25’) over an eight-
dimensional volume v®. To do so, let ¢; be a real continuous functions of the real

variables, xo, zi,...... , z7. Using Gauss’s theorem over 8 we have

[ oot 0604w +018,3d05 = [ (adSort bedSit oo+ 0,dS)
We can do this for each of the eight components of equation (25) and thus obtain
(26) fvs(DF)dv8=f37(dX . F) = F[S7],
where dX = t_éﬂi,,dSy is the seven-dimensional hypersurface element of S7. If all
the points on land inside of S’ are left D-regular, we have

27) fs,(dX-F(X)):o, X e o8,

This equation is the integral form of the regularity condition for F(X).

4. Functional derivatives and regularity condition.

Let S be a deformed surface of S7 of equation (26) in the vicinity of a point,
Xo, which lies on S°.

We define the functional derivative of F[S’] as
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FLS1-FLST]
dvs

Av8

D FLS7 = lim

2 ps

where Av® is the volume enclosed by the surfaces S’ and 87, and dvd=dx.dz;...
...dz; is the volume element of Av8. Applying Gauss’s theorem over the volume

A8, as in equation (26) with F[S']—F[S’]=F[8"—S7], we have,

f | DF(X) | x=x,dv®
~F[S7]le —hm Y2 0T DR(X).

X Av8—0 8
0 fmg dv
Then, if F(X) is left D-regular at X=X,,

D
DS"

D

CONES

F[S']=0, at X=X,.

This means that the functional F[S’] defined on the surface is invariant under the
deformation of the surface in the vicinity of the point X,. Furthermore, if F[S7]
is left D-regular at all points in V& the value of the functional, defined on the
surface S8, is invariant under continuous deformation of the surface within V.

We can extend the above argument to the functional ®[S7] defined by
30) o[S']= fﬁ((F(X)dX) G(X)) .
When F(X) is left D-regular and G(X) is both side D-regular i.e.,
(3D DF(X)=0, and DG(X)=G(X)D=0, for all X & V¢,
we can show that (see Appendix)

(F(X)D)G(X)=0.

This implies that the value of the functional ®[S7] is invariant under the deforma-
tion of the surface S’ within the regular domain of Vs in which the conditions

(31) strictly hold.

5. Example of regular functions.

An outstanding example of regular functions can be obtained from regular
functions of a complex variable, using the procedure described in Dentoni and Sce ¢ ;
it is an extension of thz procedure, for obtaining regular functions of a quaternion
variable from that of a complex variable, discussed by Fueter .

Let F(X) be a regular function of a complex variable X =z, +ix (i=v—1),
which can be written as

F(xo+ix)=u(xo, x)+itv(xe, x),
where u(xo, x) and v(xy, x) are real functions and satisfy the Cauchy-Riemann

equations :
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-~

o, 0
6x0u(x0, x):_ a:zr;'v(xl)y I)!

P _ 0
a—:a'()(xm x) - ax u(xo' x> :

Now, replacing

i1T1+ 122+ oo iy

x

where
T= Tt 1?,

we can consider X as an octonion variable with

2= —1
and

X = xotzxyty+eeeee + x7i7,
for x,(pp=0, - ,7eER.
Define

G(X)=[PF(X)
where

;92 52 92
O = (g ¥ ozt )
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Then by a straightforward calculation, using the Cauchy-Riemann equations, one can

show that G(X) is a both side D-regular function of an octonion variable X, i.e.,

DG(X)=G(X) D=0.

6. Residue theorem.

The theorem for the function of an octonion variable that corresponds to the

residue theorem for the function of a complex variable, was obtained by Dentoni

and Sce®. In the following we rederive the theorem using functionals which

were discussed in the previous section.

In equation (31), choose

(32) F(X)=X7, and therefore G(X)=[]3X.

Then the following conditions hold :
DG(X)=G(X) D=0

for all points in R®, except for X=0.

Then from equations (31) and (32), and choosing S7 as a sphere, K,7, of radius r

centered at the origin,

O[K,] = f .7 (F(X)dX) (PX™)= constant.

The value of O[K,”] was calculated and was shown that ®
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lim O[K,"]=" 4§7}—

Since the functional is a constant and does not change with the radius of the sphere

;. F(0).

by the angument in the last section, the sphere K,” can be any closed hypersphere

containing the origin. We can easily extend the theorem to the following form
tr [ o FCOIX) (CIZ~ X)™)=F(Z)

where S7 is a closed hypersurface which encloses the point, Z=X.

7. Regular polynomial functions.
We now construct polynomial functions by defining a generating function
(33)  Fu(X, €)= (tao— (£ +2))n= (X7 — £ X)n/20
= (t1(xot1—x1) +t2( Lotz —2g) +ovoer +t7:(xotr —27))",
where ¢ = kéltk ir, and ;=é:lxk ir. Define polynomials Ppjn,...n; (Zo, 21, 27) DY

expanding F,(X, t) in power series as: —

7
Sni=n
—> i=1
(34)  Fu(X, t) = X 1! Pujngereny(Zo, L1y v s 21) EME12 .. 1171,
where the summation is taken over nj, ng, -+« ,n7 such that ny+ng+-oeeer +ng=n.

To show that Pa, 4, ... n, (xo, 21, +, 27) are left D-regular functions we first prove

that F,,(X,_t)) satisfies the left D-regular condition. Let
K=(tzo—t+2),
then
DFu(X, 7) = Tiy o0 K= 0 Knt By K.
p=0 u 0 k=1 Xk
Since, for the product of powers of two different octonions K and ¢ we need not
concern ourselves with the associative law, we simply write the result as: —
Kt K,
and thus we have

DF.(X, )= 21 K" ¢ K"+ 3 3 in(Kn(—t) « K70).
r=1

k=1 7=1
Since K and s commute, we have

DF.(X,7)= g [K* £ K71 —§ KK 1]=0.,
From equation (34) and the fact that ¢, are independent parameters we see that
Pryng..ong(Zo, 1, +++o: , x7) are also left D-regular, i.e.,
(35) DPy ny..cng (o, 21+ , x7)=0.

These polynomials are the extension of the Fueter’s polynomials of quaternion
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functions to octonion functions. From the definition (34), the polynomials are ex-

pressed explicitly as
1 . .
(36> Pnlnz reeng (xO! Ly srocee ’ x7) :"n T Z(Zklxo_xk1> """ (llcnxo—‘xkn),

where the summation is taken over all possible permutations of the series (&)=
(kyy wveeee , ko), where each of &y, .- k., can take any value 1, 2, ------ , 7, and that the
number of times 1, 2, ------ 7 appears in the series (k;) is ni, ng, -+ , n7, respectively.
As can be seen from equation (34) the right hand side of equation (36) does not
depend on the order of the multiplication of the factors (ixrzo— xxr), once the
order is fixed for each terms hence the parentheses were omitted.

The study on regular functions using these regular polynomials, via tha Fourier
representation, the regular exponential functions, and the boundary value problems,

will be dealt elsewhere.

Appendix.
To prove that (F(X)D)G(X)=0 when F(X) is left D-regular and G(X) is both

side D-regular.
Let G(X) be both side D-regular. Then,

(Al)  DG(X)—G(X)D=0, ie,. 28 _ % _g,

ox, ox,
and
(A2) DG(X)+G(X)D=0, ie., gi‘; +g—i’~: =0,
and
0go T Ogk _
<A3) 7 al‘o n A§1 7 ka, =0,
for Ak pv=12 ... , 7.
Then,
_ 7 '65” o\ ’ . ﬁag_.
I=(FCOD)GX) = 3 ( b z,,)G(X)-i—E,; (F i ( ax,,)
Since
T OF .
‘uz::(] 8}; l,u:DF:O
.. [ 0G
I - ;1§l) (Fz/l) ( 8x,u)
- aG 7 . 78g:07 ? . 78gk . . agl N
= F o, = B (o8 ) & Fio (8 i)+ g Fio(ghi)
L kx0

_pO% & (pO). &g < dgo
=F 0xo + k§1 ( F 0xo >Zk+k§ (Fix) 6;?;:7) +
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axl k .

% - Og .\ Ogy . .
~EFE e+ m {(Fingli+ (Fi)
Lkx0

Using equations (A2) and (A3),

- 0g1 » s g : - ;
! _Lg {(F Oxx i) it (F Bx, &) 11:}
L,kx0
= 0g1 rs 2 0gx e e
= T { i GE (Guinio) +-585 (v
lL.kx0
p=0,1,++,7
Since
(i;t ik)il - —(iﬂ I.l)ik, fOr y:O’ 1, ey 7’
we have

_ agz _ agk .
= l>zl:c fp( Oxx ox; > (Gut)in) .
1,k*0

Then by equation (Al),

I=0.
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