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Abstract :
We study on the maximum principle in the boundary integral equation formu-
lation for the convective diffusion equation in a steady state. We also show an

example satisfying the maximum principle in incompressible flow case.

1. Introduction.

A boundary integral equation method has been recently presented [2, 3] for a
steady solution in the convective diffusion problem. There have been some numerical
methods, for example, of the centered difference method, the standard finite element
method and so on. All of them have been restricted to domain-type methods. In
addition, they give rise to nonphysical oscillation when the convective term is domi-
nant. On the other hand, the upwind methods such as the upwind finite difference
method and the upwind finite element method have been developed [4] in order to
obtain stable solutions. It is, in general, of the importance for stability that the
numerical method satisfies the maximum principle in the convective diffusion pro-
blem. Really, some studies on the maximum principle [1, 4] have been known for
the domain-type methods. In this paper, we shall consider the maximum principle
for theboundary integral equation method. Moreover, we shall show a simple

example for incompressible and uniform flow case.

2. Boundary Integral Equation.
Let £ be the bounded domain in R™ enclosed by the boundary I'.  The convec-

tive diffusion equation in a steady state is

LLg1= ~V (@) V) -7 (b)) = f(x)  in & @ 1,
where ¢(z)cH? (2) and a(x), b(x), f(x)C! (2). The weighted residual statement
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can be written as

[ Lislypde= [ fpae 2. 2),

where +» is some weighting function. By the Green’s theorem we have
fg {L[¢Jy—pM[v]1}d2 = fr{ —a(0¢/dn)\r +adp(dVvr/on) +bapr}dl’ (2. 3),

where M[ -] is an adjoint operator to the governing operator L[ + ] defined by

MI¥]= ~V (@V¥) +674 @ 49,
n 1S the outer normal unit vector to I, and &, is the n component of 4. Instead of
4Jr, the fundamental (or elementary) solution satisfying

M[y*]=0(x; y) (2. 5,
where d(x; y) is the Dirac’s delta function with the source point x=(xi, x2, ..., Tm)
fR™. From Egs. (2. 1) and (2. 5), we can rewrite Eq .(2. 3) to the boundary

integral form

c(@)d(2) = [ an* (s NSOAr+ [ v¥ s Dpa()dr = [ (z; »f()de

2. 6),

where ¢.*(x; y) and p.(y) are, respectively, defined by
qn*= —a(oy*/on) —bu* 2.7,
pn = —a(op/on) (2. 8),

and ¢(x) is the weight determined by the solid angle at x.

3. Maximum Principle.

Now let us eamine the maximum principle in the boundary integral equation

formulation. We make the following assumptions:

A;) Vb=0 in £,

A ¢>0 on T,
and

As) ¥*>0

Note that the true solution of Eq. (2. 1) is nonnegative over £ if the assumptions
A)D), A;) and f=0 hold. We also define that

¢mx:7§gx{<f>(y)} (3. 1),
and

4’””"=’pr"{¢(3’)} (3. 2).
Then, we have the following lemma :

Lemma 1.

If zef then
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buin | @ (25 SN b 3 3).
Proof. Since the source point z is in £, ¢.*(x; y) has everywhere the same sign
for ycI'. We can then take the » such that ¢,*(x; y) > 0. Therefore, we have
busn | qa* (23 DA< [ 04 (23 SN dnas [ w5 0al G .
In addition, from Eqs. (2. 5) and (2. 7), we know
[ (x5 pdr = [ s(xs yyde=1 (3. 5).
Hence Lemma 1 can be readily proved.
Let us show the maximum principle for the boundary integral equation method as
the following theorem :
Theorem 1 (Maximum principle).
Suppose that 2 is convex and that f=0. Assume that $(x) is nontrivial. The
solution ¢(x) of the boundary integral equation (2. 6) satisfies
[Lar @ e dr—{ y i »pu(ndr < g 3. 6)
if xR and yel'.
Proof. Suppose that ¢(x) attains to the maximum value ¢,,. at some point o
in 2. Then we consider the ball B(r) (< £) centered at x, where the radius r=
|zo—y|. Then there exists B(ro) such that p,>>0 (yon ¢B(r,)). From the assump-
tion Asz), we have
J ooy AT =0 3. 7).
It also holds that

_ *( _ PR ( o
D _fw gy 37 (205 9)8(y) dy fw g V(x5 )P 3)dy.
Let us consider the maximum value on 4B(r,) denoted by ¢,.. Then from Lemma

1, we obtain

* . —_ 1% . )
fau 3 (zq; ¥)8(y) dy fauw)"" (x0; y)pu(¥)dy

\;anuw— f V¥ 2o Y)Pa(¥)dy < Duas .
J 0B [G))

Since b —bmar>0, we readily know

J oy 5 Crvi mpuC)dy 0 3. 8).
Hence, from Eqgs. (3. 7) and (3. 8), it should hold that
[ Caos 9Ipa(3)dy = 0 3. 9.
aB (rgd

It can be seen from Eq. (3. 9) that p,(y)=0 in an arbitrary domain (< B(ro)),
and that ¢ equals to the constant ¢,.. in B(r,). Similarily, we consider another

ball B(r,) centered at some point (¢B(ro)). Then it holds that p.(y)=0 in B(r).
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Finally, we can show that ¢ =¢,., in £, because of 2= U*;.oB(r;) for the finite &.
The above statement contradicts to the assumption, which completes the proof.
From the results obtained in the above, we have the following corollaries :
Corollary 1.

Suppose that f<<0. Then it holds that

#(x) << Pmaz V (3. 10).
Proof. Since ¢(x)=1 for xc2, we know from Eq. (2. 6) that
s(0)= [ awodr — [ wrpudr+ [ yrsae 3. 11).

On the other hand, from the assumption A3) and f <0, Eq. (3. 6) can be rewritten

into
[ aweoar — [ yrpudr [ yrfae< { airodr— [ ypodl < bna.

Corollary 2.
Suppose that xR and yI'. Then

flﬂ/f*(x s ¥)pa(y)dy =0 (3. 12).

4. Example.

Let us show the simple example for three-dimensional case (2c R3). Here we
assume that a(x) and 4(x) are the constants. Note that the above assumption
implies the incompressibility of flow A:) V 6=0. Then the fundamental solution
(or the Green’s function in an infinite domain) w*(x;y) is

v*(z; y)=exp[—(b, r)/(2a)—|b|I7|/(2a)]/(4ma|r|) (4. 1),
where r=x—y, x=(2;), y=(y), b=(&;), and ( »,+) and | « | denote the inner pro-
duct, the Euclidean norm, respectively. The derivation_ of Eq. (4. 1) is stated, as

follows : Applying the Liouvile’s transformation to Eq. (2. 5), we have

= \VEW*([r1)+(6/C2a))*W*(|r])=0(|r]) (4. 2).
where

V*=exp [—(6, r)/a)IW*(|r]) (4. 3).
The fundamental solution of Eq. (4. 2) is given by

Wr=exp[—|b||7]/(2a)]/(4ma|r]) (4. 4,

which is known as the Yukawa’s potential. Thus we have obtained Eq. (4. 1) from
Eqgs. (4. 3) and (4. 4). Our fundamental solution y*(x;y) is nonnegative in R?
for any a, b, x and y. Hence v*(x;y) gives rise to the example which satisfies
the statements in the previous chapter. Actually we know many examples in in-

compressible and unifom flow problems.
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5. Concluding Remarks.

In this paper, we present the maximum principle (Theorem 1 and Corollary 1)
for the boundary integral equation formulation and show an example of three-
dimensional case. In the steady convective diffusion problem it is an important
element for the stability whether the numerical method satisfies the maximum
principle. In the discretization of Eq. (2. 6), the result of Corollary 2 can be
useful for testing the discrete maximum principle. Hence we will be able to em-
ploy the analogy to Eq. (3. 12) in the linear systems arising from the numerical
method, for example, from the boundary element method, also numerically to ex-

amine the stable solution.
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