Application of Dual Karnaugh Mapping for processing
of logical switching functions and designing

combinational switching circuits

Junso Toyvyobpa

Department of Electronic Science, Okayama University of Science
Ridaicho 1-1, Okayama 700, JAPAN

(Received September 24, 1982)

Abstract

A graphic methods of logical processing in which Karnaugh Map and Maxterm
Map, proposed in this paper and can be said as modified Inversed Karnaugh Map,
are cooperatively utilized is discussed. It is shown that the methods is very efficient
to get complete sum or complete product and also to convert from sum-of-product
to product-of-sum, and vice versa. Some of applications are shown for processing

logical switching functions and combinational switching circuits.

Introduction

This paper is concerned with expanding availabilities of graphic methods.
Maxterm Map, which is cooperatively utilized with Karnaugh Map in Dual Mapping,
is addressed by wholly supplemental numerics to that of Karnaugh Map, and each
cell of the Map has logical AND connectve property with any of the others. We
use symboles : (used as AND) to represent sum-of-product and symboles + (used
as OR) to represent product-of-sum on a Map, former being addressd by Appendix
1 and latter by Appendix 2. Two forms of a switching function sum-of-product
and product-of-sum can be displayed, if desired, on a map without any of doubled
plotting nor spaced plotting of :’s and +’s based on these arrangement of addres-
sing. The Map on which :’s are to be plotted normally by address of Appendix 1
(simplified as “m”) is called as Minterm Map (simplified as Map(m),). The Map
on which +’s are to be plotted normally by address of Appendix 2 (simplified as
“M”) is called as Maxterm Map (simplified as Map(M)). The graphic methods,

based on these arrangement of mapping, can be more useful.



86 Junso TovyobpA

1 Minterm mapping and Maxterm mapping

Of the mapping we arrange two of styles, variable-wise-mapping and term-
wise-mapping, former for getting simple sum or simple products latter for getting
switching functions of 2'nd order.

We give value 0 to complement of variables of simple product to be displayed
prior to variable-wise-mapping on Map(m), and then we take logical AND opera-
tion with the value of each cell of the Map. Plotting is performed as to get the
records of the result of succesive AND operations using :’s for only the cells valued
as 1. Appendix 3 shows how minterm m;s (ABCD) is gotten on Map(m) which
has initially all I's. Similarly we give value 1 to complement of variables of
simple sum prior to variable-wise-mapping on Map(M), and then we take logical
OR operation with the value of each cell of the Map. Plotting is performed as to
get the records of the result of successive OR operations using +’s for only the
cells valued as 0. Appendix 4 shows how maxterm M,;s (A+B+C+D) is gotten
on Map(M) which has initially all 0’s.

Term-wise-mapping on to Map(m) is performed giving value 1 only to a term
(simple product) of switching function to be displayed, and taking logical OR opera-
tion between the value of each cell of the Map. Plotting is performed as to get
the records of the result of successive term-wise OR operations using :’s for only
the cells valued as 1. Similarly, term-wise-mapping on to Map(M) is performed
giving value 0 only to a term (simple sum) of switching function to be displayed,
and taking logical AND operation between the value of each cell of the Map.
Plotting is performed as to get the records of the result of successive term-wise
AND operations using -+’s for only the cells valued as 0. Logical properties of
Dual Mapping are summarrized on Appendix 9.

The mapping can be said, being done as to get the records of result of logical
operations, a synthesizing of logical information of original map and that of function
to be displayed.

Appendix 5 shows mapping of function J=a+g+y=ABD+ABD+ABC on to
Map(m), which already has information of I=8+¢&+A=ACD+BCD+ACD. Ap-
pendix 6 shows mapping of function T=aBy=(A+B+C)(A+C+D)(A+B+D)
on to Map(M), which already has information of S=8¢=(A+B+D)(B+C+D).
It is convenient to use temporal names for terms included in function to be mapped,
such as &, B, 7, ,,, » and then rearrange the names for resultant function, using

such as a, b, ¢, ,,, , according to logical connective property of the Map.



Application of Dual Karnaugh Mapping 87

Mapping process can be illustrated as following,

Suffix of “m” 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OdMap(m) 0 0 1 0 0 1 1 0 0 O O 1 0 1 0 1
J¢m) o0 o0 o0 o0 1 1 o0 0o 1 O 1 O O 1 0 1
Mapping logic + + + + + + + + + + + + + + + +
NewMap(m) 0 o0 1 o0 1 1 1 0 1 0 1 1 0 1 0 1
Plotting

Suffix of “M” 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OdMap(M) 1 0 1 o0 1 1 1 1 1 o0 1 1 1 1 1 1
Teg(m) 0 0 1 o0 1 1 1 0 1 0 1 1 0 1 0 1

Mapping logic
NewMap(M) 0 0 1 o0 1 1 1 o0 1 o 1 1 o0 1 o0 1
Plotting + + + + + + +

where Jo(m) and To(M) are used as minterm expression and maxterm expression
for function J and T respectively.
We can have those of resultant function X and Y as follows,
Xo(m) =mgz+my+ms -+ Mg+ Mg +Myg-+ My + Myz+Mys (1)
Yo(M) =Mi1sM1:M12MsM¢M3M; (2)
Rearranged form which can be seen on Appendix 5 or Appendix 6 are as follows,
X(m)=ABD+ABD+ABC+ACD+ACD (=a+b+c+g+h) (3)
YM)=(A+B+C)(A+C+D)(A+B+D)(B+C+D) (=xyzu) (4)
These are one of simplifyed sum-of-product and product-of-sum respectively. Of
(4), we can see, that it is the only minimum product-of-sum.

These treatment are quite similar to logical operation of switching circuit of
2'nd order. We can see that variable-wise-mapping corresponds to 1’st stage and
term-wise-mapping corresponds to 2’'nd stage of both forms of AND-OR or OR-AND
switching circuit. Accordingly it is easy to design switching circuit directly from

a map whichever sum-of-product or product-of-sum.

2 Boolean Algebraic background of Dual Mapping

We know that, by canonical expansion theorem of Boolean Algebrae, arbitrary
logical function Z can be expressed either by sum-of-minterm Z,(m) or product-of

sum Zo(M), of which logical formulaic expression shown as following,

Z=7Zo(m) = 2"20’“‘(ki :my) (5) Zo(m) = 2{(121 - my) (6)



88 Junso Toyobpa

Z:-Zo(M) =2 ]ofl(ki—l—Mzﬂ_1_1;) ( 7) Zo(M) = 2107—1(E1+M2n_1_i> (8 )

m;= Man_y_; (9)
where n is number of variables; k; are constants valued as 1 or 0 and whose
suffix corresponds to that of minterm; 3 and I are used as successive OR sum
and successive AND product respectively.

Now, we can see, inspecting Map(M) of Appendix 6, that Y(M) of (4) is the
only minimum form of product-of-sum of Y. But we can find, of Appendix 35,
another form of sum-of-product for X as follows,

X;(m)=ABD+BCD +ABD+ACD+ACD (=a-+d+e+g+i) (10)
We can also see, by further inspection, that the pattern of : for X and that of +
for Y(M) have wholly supplemental appearance. Accordingly we can have jointed
form of two maps as is illustrated on Appendix 7. This facts hows that X(m) or
Xi1(m) addressed by “m” and Y(M) addressed by “M” should be different expres-
sion of a function Z. Accordingly we can write hereafter as follows,

Xy(m)=Z,(m) X(m) =2Z,(m) Y(M)=Z(M) (1D

It is important that, as for jointed form of Map such as Appendix 7, the Map
has partially different address system, “m” for: and “M” for +. And is also im-
portant tbat there are logical AND between : of written minterm and 1 of valued
cell where addressed by “m” and also logical OR between + of written maxterm
and 0 of valued cell where addressed by “M”. Existence of these constants 1 or
0 means none of inconsistency, because 0’s are used for absent terms on plotting
Z(m), and 1’s are used for absent terms on plotting Z(M).

We also can have a map in seperated form such as illustrated on Appendix 8,
and also arrange, hereafter, that Space on Map(M) means 1 for inspecting con-
venience.

It is very useful, based on these arrangement, that we can get four of logical
informations from a Dual Map by selecting proper address for reading out :, -+,
and Space Pattern as illustrated on Table 1, on which reading out notations are
seen.

Table 1 tells us that logical informations of Z are gotten as Z/: (m)“m” (sum-
of-product) or Z/0(m)“M” (product-of-sum) on Map(m), and also tells us that of
7 are gotten as Z/0(m)“m” by expansion law or as Z/: (m)“M” by Morgan’s law.
Accordingly Z/0(m)“M” is gotten as negation of Z/0(m)“m” by Morgan’s law or

as negation of Z/:(m)“M” by expansion law. Procedure and result of reading out



Application of Dual Karnaugh Mapping 89

Table 1 Logical information of Function Z onseperated Dual Map.

| Symboles ﬂ/g;(m)ﬁ Map (M)
'Read by iii,, ] Space 0 + - Space ‘
“m” | Zo(m)=Z/:(m)*m” Zo(m)=Z/0(m)*“m” | Zo(m)=Z/+(M)*“m” Z¢(m)=Z/0(M)“m”,

|
|
MY Zo(M)=2/:(m)“M” Zo(M)=Z/0(m)*M” | Zo(M)=Z/+ (M)"“M" ZO(M)=Z/0(M)“M”%

(NOTATION) Z/:(m)*“m” means logical information of Z of plotted: pattern on Map (m)
read out by minterm address “m”. Z/0(M)“M” means logcical information of Z of Space
pattern on Map (M), which has plotted +'s, read out by maxterm address “M".

+ or Space from Map(M) is the same as from Map(m), and also we can have
four of logical informations of Z.

Note that the logical informations gotten on Table 1 are wholly correspond to
those of fundamental equation (5)~(8). Accordingly we can rewrite all of them
using the read out notation illustrated on Table 1, of which formulaically as follows,

Zo(m) =7Z/: (m)“m”: Mg+ My~ Mg+ Mg+ Mg -+ Mg+ Miy1+ My3-+ 15 (12)

ZO(M) :Z/+ (M)“M”:M15M14M12M3M6M3M1 (13)
Z/O(m)“m”=Z/0(M)“m”=mo+m1+m3+m7+m9+m12+m14=70(m) (14)
Z/0(M)“M”=Z/0(m)“M” =M 1sM1:1M1:MM;MsM,M:M, =Zo(M) (15)

We know (13) has the only minimum form of (4). On the other hand there are

many ways to get simplified form of (12), but any one of them should be included

in (13), because Zo(M)=Z,(m). We have, by expanding (13) as follows,

Z(M)=(AD+B+C)(AB+AD+AC+BC+CD+AD+BD)

—ABD+ABD+ABC+BCD+ABD+ABC+ACD+ACD+BCD
=a+b+c+d+e+f+g+h+i=2Z>0D) (16)

where Z(fm) is used as complete sum of Z.

Note that (16) includes all of terms of (3) and (10), moreover the new term
f. Confirmation of (16) can be seen on Fig. 1, Prime Implicants Table by Quine-
McCluskey methodes.?? Truth Table of complete sum and Map(m, M) of (16)

are shown on Fig. 2, on which we can see that each terms of (16) are cyclic, that

Fig. 1 Prime Implicants Table for Z(m) Fig. 2 Truth Table and Cyclic Map
for Z(m) and Z(M)
mq md m‘ mb m; Ul’;o HW T I“L3 lb
(a)(A:B:D) bt A B C D M.:pim,M)
b (A:3:D) 4+ # (a) 1 0 - 0 :
g {A:C:D) i + p b1 1 - 1
d (B:C:D) 4 | A g 1 - 1 1
e (A:B:D) 4 4 ! d - 1 0 1
t(A:B:0) 4 4 e 0 1 - 0
¢ (A:n:C) A 4 \ 101 -
h (A:C:D) 4 A X 0o 1 0 -
i (B:c:D) & 4 h 0 - 1 0
- 0 1 0



90 Junso TOYODA

is there are many combinations which form the same pattern of : on Map(m). We
could have found (10) as one of these combinations avoiding duplicated utilization
of terms and observing common use of D of essential term (a).
We can have another combinations by expanding Petrick function® ¢, as follow-
ing,
Petrick Function=a(h+i)(c+e)(c+d)(e+h)(f+g)(b+d)(b+g) a7
=a(hcbg +hcdg + hebf + hedbg + hedg + hedbf +eichg + eicdg + eicbf + eidg

+eidbg+,,,,
Underlined five are to be selected, of which additional three combnations are as
follows,
Zs(m) =ABD+ABC+BCD+ACD+ACD (=a+c+d+g+h) (18)
Z,(m) =ABD+ABD+ABC+ABC+ACD (=a+b+c+f+h) (19)
Zs(m) =ABD+BCD+ABD+ACD+ACD (=a+d+e+g-+h) (20)
All of them are implied by Z(ifi) of (16), but are different each other. Thus we
can have following relations.
ZM) = Z(m) ; Z:(m) S Z(H) ; Z:(m) & Z(M) ;
Zy(m) S Z(M) ; Z(m) S Z(m) ; Zy(m) &S Z(m) ; (2L
Another example of cyclic prime implicants of product-of-sum which has dual rela-
tionship with (21) is seen on Function L, of which Truth Table of prime implicants
and cyclic map are shown on Fig. 4, and formulaically given as follows,
Lo(M)=L/+(M)*M” =M M.:2-M1:M:1:Ms M; My M5 M, (22)
LiM)=(A+B+D)(A+C+D)(A+B+D)(A+B+C)(A+C+D) (=xyvwr) (23)
L:M)=(A+B+D)(B+C+D)(A+B+C)(A+B+D)(B+C+D) (=xzupq) (24)
Ls(M)=(A+B+D)(A+B+C)(A+B+C)(B+C+D)(A+C+D) (=xuwqr) (25)
L{(M)=(A+B+D)(A+B+C)(A+B+C)(A+B+D)(B+C+D) (=xuwpq) (26)
Ly(M)=(A+B+D)(A+B+C)(A+B+D)(A+B+C)(A+C+D) (=xuvwr) (27)
Lo(m)=L/0(M)“m” =me+ Mz -+my + My + M2+ Miz-+Mis (28)
L(m) =ABD+ABC+ACD+BCD (=a+b+c+d) (29)
We can see that (29) is the only minimum sum-of-product of L.
Confirmation by Prime Implicants Table is shown on Fig. 3, and we can have com-
plete product L(M) as following
L(M)=(A+B+D)(A+C+D)(B+C+D)(A+B+C)(A+B+D)(A+B+C)
(A+B+D)(B+C+D)(A+C+D) (=xyzuvwpgr) (30)
We can have L(rAn) by expanding (30), as following
L(m)=(A+D+BC)(A+B+CD)(A+B+CD)(C+D+AB)(B+D+AC)



Application of Dual Karnaugh Mapping 91

=(A+D+BC)(CD+AB+AB)(C+D+AB)(B+D+AC)
=ABD+ABC+ACD+BCD 31
We can confirm, by (31), that L(m) of (29) is the only minimum sum-of-product
of L. Expanded form of (23)~(27), Li(M) for example, are as follows,
L:(M) =xv)(yw)r=(A+BD+BD)(C+AD+BD+AB)(A+C+D)

=a+b+c+d+ABD (31")
Fig. 3 Prime Implicants Table for L(M) Fig. 4 Truth Table and Cyclic Map
for L(M) and L(m)
WM oMM M m mM MoooM
_ A A B C D Map (m,M)
A+B+D - —
(;)EA:ciﬁg i * 4 (x)1 v - 0 [d u’ C'wp
z (B+C+D) 4 A y - 10 AT AN
u (A+B+C) A4 2 - 1 1 0 ; —
v (A+B+D) 4 4 u 101 - x_|b |ba; a
w (A+B+C) 4 4 voiooo-1 Ld X] rq rp
p ((_\+H+D) i v w O 1 1 -
q (G+C+D) vl 4 p 0 (1) (‘) i
. Al q -
r (A+C+D) A 4 r o - o0 1

Thus we can write down the dual relations of (21) for L as following,
L(m) =L(M) 5 Li(M) DL(M) 5 Lo(M) DLM) ;
La(M)2L(M) ; L(M) 2L(M) 5 Ly(M) DLM) ; (32)

It is important that both of (16) and (31) include none of redundant terms
such as seen of none underlined terms of (17) on expanding Petrick Function. It
means that the only minimum function, be it whatever sum-of-product or product-
of-sum, precisely correspond to complete sum or complete product. Thus reading
out minimum function on Dual Map offers useful means to get complete sum or
complete product, and is applicable to synthesize or to decompose switching func-

tions and to design a switching circuits.

3 Sythesizing or Decomposing a switching functions on Dual Map

Direct synthesizing a sum-of-product with a product-of-sum, whatever be it
logical AND or logical OR, can be easilly done on Dual Map, because functional
transformation is easy. Example, as for synthesizing Exclusive-OR Function K=

ZL+7L, are shown on Fig. 5 ~ Fig. 8.

Fig. 5 Synthesis P(M)=Z(M) : L(m)
Z/+(M)tM» L/0O(m)"M" P(M)

+ !+ + +!ﬁ+ +]
I

!

1+
—]

+ |+

- i
i : i |

|
FETT T

[ + + |+ 1+ + |+ |+

+ + 1+ +
i
|

- —

+ |+




€2 Junso ToyoDpA

Fig. 6 Synthesis Q(M)=Z(M) :L(m)

Z/0(M)rmn L/:(m)"M" QM)
+ [+ + | + + i+ |+ |+
+ |+ + + |+
+ [+ : + [+ [+ = + 1+ |+
+ [+ + + + |+ +

Fig. 7 Synthesis R(m)=P(m)+Q(m)

P/0(M)"m" Q/0(M) "m" R(m)

|
l
i

-

+ =

|
|

Fig. 8 Function K as R(m); and as R(M)
R/O(m)"'M" K(m)=R/0(m)"m" K(M)=R/O(M)"M"

+ |+ [+ {4 . tl!
+ [ +‘7+f+1

+

+ + 0+

f
L]

+ +

A

!
I
i
T
|
J

: ‘ +

+

We can have, for given Z(M) and L(m), function P(M) directly from Fig. b
as following,
P(M) =Z(M) : L(m) =(Z/+ (M)“M”) : (L/0(m)“M”)
=(A+D)(C+B)(B+D)(A+D) (33)
P(m) =P/0(M)“m” =ABD-+ACD+ABCD (34)
L/0(m)“M” of (33) include nine of cyclic prime implicants as had been shown, but
we need not worry about because they are complete product. We also can have
function Q(M) directly from Fig. 6 as follows,
QM) =Z(M) : L(M) =(Z/0(M)“M”) : (L/:(m)“M”)
~(B+D)(B+D)(C+D)(A+B)(A+B+C) (35)
Q(m) =Q/0(M)“m” =ABD+BCD+ABCD (36)
Then, PARITY-OR function R=ZL+ZL can be gotten on Fig. 7, forming OR-
SUM of Fig. 5 and Fig. 6, as follows,
R(m) = (P/0(M)“m”) 4+ (Q/0(M)“m”) =AD+BD+ABC+ABC (37)
R(M) =R/0(m)“M”=(A+B)(C+D)(A+B+D) (see Fig. 8) (38)
Thus we can have Exclusive-OR function K, by negating R, as shown on Fig. 8,
of which formulaicaly as follows,
K(m) = R/0(m)*m” =AB+CD+ABD ; K(M)=R/: (m)*M” (39)
K(M)=R/: (m)*M”=(A+D)(B+D)(A+B+C)(A+B+C) (40)



Application of Dual Karnaugh Mapping 93

Decomposition of a function to a form of (simple product)-OR-(pro-duct-of sum)
is easilly done by Dual Mapping. Fig. 9 shows a decomposition of L to form of
ABD+L'(M), for given L(m) of (29), of which illustrated as following,

L(M) =L/ : (m)“m”=ABD-+L/0(m)“M” =ABD+L;(M) (41)
or ABD+L.(M) or ABD+L3s(M) or ABD+L,(M) or ABD+Ls(M)

Fig. 10 shows a decomposition of Z to form of ABD+ACD+Z'(M) for given
Z(M) of ZIM)=Y(M) =xyzu of (4), of which illustrated as follows,

Z(M) =Z/+(M)*M”=Z/0(M)“m”=ABD+ACD+ (a+c+h)/0(m)*“M”
—ABD+ACD+(A+B)(C+D)(A+D)(A+B+C) (42)

Fig. 11 shows decomposition of K to form of (A+B+C) : K'(m), for given
of (40), of which illustrated as follows,

K(M) =(A+B+C) : (B+D)(A+B+C)(A+C+D) (43)
=(A+B+C) :K(m)=A+B+0C) : K/0(M)“m”
=(A+B+C)(AB+CD+BC+AD)

Fig. 9 Decomposition L(M)=e+L’(M) Fig. 10 Decomposition Z(M)=b+g+Z'(M)
e=ABD L (M) bt ARDEACD 27 (M)
h]+ + l 1[ | i ! " + + ‘
H + ! | T : I l
L(M)= . + + Z(M) = i . ]4 . + + L+ ;
: + Tt e Te Ty ]+ !
i ! ! | i
r T+ e I T T ]
I | B i

Fig. 11 Decomposition K(M)= (A+B+C) : K’(m)

R+l+C K_(m)

T ) ﬁ:}:'

r—O——w—T—- I

KM= R

|

+

— r——,—————‘w‘
, . , |
C
| |

4 Designing minimum switching circuits of 2’nd order by Dual Mapping

Minimal sum-of-product is not always minimal of switching circuit of 2'nd order,
and also the same is as for minimum propuct-of-sum. we should inspect both forms
of given function. On this point of view Dual Mapping offers very useful means,
being easy to inspect both forms on same field of a map. We could have had
minimum product-of-sum Z(M) as the only minimal one of given function Z, and
also L(m) of product-of-sum as the only minimal one of given L. Moreover, we can
design a circuit directly from a map whatever be it sum-of-product or product-of-

sum. Discrimination which one be selected is very easy on Dual Map. We simply



94 Junso ToyobDA

select the only minimal one without worrying about cyclic prime implicants, be-
cause the only minimal one is always just the same as complete sum or complete
product, as had been shown.

OR-AND arrangement for Z(M) and AND-OR arrangement for L(m) are shown
on Fig. 12 and Fig. 13 respectively. Both of them are the only minimum one of
switching circuit of 2'nd order. Sometime we are forced to utilize either one of
OR-AND or AND-OR of the case such as common use of logic elements. We are
not sure, without any of restriction, which one to be selected of Z;(m)~Zs;(m) or
Li(M)~Ls(M). Temporally selected examples are shown on Fig. 14 and on Fig. 15.

Fig. 12 Fig. 13 Fig. 14 Fig. 15
OR-AND for Z(M) AND-OR for L(m) AND-OR for Z,(m) OR-AND for L;(M)

a

T

o
U Qi O Woiw »>oiw>» O Q >

OO Q W >

i

DIm>»iQIw > W Q0 UQ >
[o]
1O wWi>» o >» 0 QrIolw >

B
B
D
c

Q b
£

Once the minimum OR-AND or AND-OR found out, we can transform to NOR-
NOR or to NAND-NAND arrangement by simply replacing all of logic elements.
Newly gotten NOR-NOR (or NAND-NAND) has just the same input variables and
number of logic elements of original OR-AND (or AND-OR).

There is restriction on designing NOR-NOR-NOR (simplified as 3-NOR) or
NAND-NAND-NAND (3-NAND) that all of input variables should not be negated
variables. We can design the input stage of 3-NOR or 3-NAND by utilizing logic
elements as NOT elements for all of the input vaiables. But we seek for common
use of logic elements to have more simplified form of the input circuit, utilizing
following Boolean Alge-beaic relations.

AB=A(A+B); AB=B(A+B); (44)

A+B=A+AB; A+B=B+AB (45)
(44) shows that paired left hand side AND term have common output A+B of
preceeding stage, and (45) shows that paired left hand side OR terms have common
output AB of prceeding stage. We can observe availabilities of these relations on

truth tables illustrated on Table 2 and on Table 32 on which 0 factored as (0)



Application of Dual Karnaugh Mapping 95

correspond to negated variables of left hand side of (44) and (45). 0 which d’'nt
factored by ( ) means the output of NOT elements to be utilized as possible as
commonly. Designing 1’st stage of 3-NOR or 3-NAND are performed by finding the
most effective combinations of these two kind of 0’s. Designed 3-NOR for Z(M)

and 3-NAND for L(m) are shown on Fig. 16 and on Fig. 17 respectively. Designed

Table 2 Truth table of 1'st stage of Table 3 Truth Table of 1'st stasge of
3-NOR for Z(M) and 3-NAND 3-NAND for Z,(m) and 3-NOR
for L(m) for L, (M)
A B C D A B C D
Z 1 0 — 0
ZM) y 1 _ 0 (0)1 1(m) g 0y (1) - 0
z (O (02 — 1 i = ®z 1 0
- 2
L,(M) x 1 1 — (0)!
L(m) ¢ 1 0 — r (O - @2 1
_ y 1 — I (0)2
0 0 0 vl — ()
w (03 1 1 —

suffix correspond to No. of the gate

Fig. 16 Fig. 17
3-NOR Arrangement of Z(M) 3-NAND Arrangement of L(m)

Flg. 18 3-NOR for Z,(m) Flg. 19 3-NAND for L, (M)




96

Junso TOYODA

3-NAND for Z;(m) and 3-NOR for Li(M) are also shown on Fig. 18 and on Fig. 19

respectively.

It can be said, arranging all of above discussion, that Dual Mapping offers use-

ful means to process switching functions and to design switching circuits, and is

expected widely use of related fields.

The auther would like thank Professor R. Hashimoto and other members of

Department of Electronic Science, Okayama University of Science, for their advices

of this paper.

9]
2)

2)

3)

4)

5)

Reference

McCluskey, E. Minimization of Boolean functions. Bell Syst. tech. J., 1956, 35, 1417-1444.
Quine, W.V. The ploblem of simplifying truth function. Am. math. Mon., 1952, 59, 521-
531.

Quine, W.V. The ploblem of simplifying truth function. Am. math. Mon., 1952, 59, 521~
531.

Petrick, S.R. A direct determination of the irredundant forms of a Booiean function
from the set of prime implicants. Air Force Cambridge Research Center report Bedford,
Mass. 1956. AFCRD-TR-56-110.

Pyne, I.B. and McCluskey, E. Reduction of redundancy in solving prime implicants tables.
LR.E. Transactions on electronic comp. 1962. EC 11, 473-482.

D.T. Ellis. A synthesis of combinational logic with NAND or NOR elements. IEEE
Trans. Comput. EC-14, No. 5, October, 1965.



Application of Dual Karnaugh Mapping 97

Appendix 1 Minterm address “m” Appendix 2 Maxterm address “M”
- T E - \\ E
A~ LA A ™~ A
D
Mo MM MM M
"o Ma ™28 |M6| 20| 28 ”‘24]‘ \[Ma1]"27|"19[" 23] 15| 11| 3 |"7 \C
MM MM M
" M ™3™ |M17]"21|M2g "‘25}) M30[M26 [M18|Y22|M14|"10["2 |6
/ 121 2
: Mo Mo im M (M M
é|m3 M7 1M 1™1 M9l 23 M1 M2y Mog|Moa M6 M0 Mi2|Ms Mo |Ma
\
- Mo {m_ M M
"o M6 |™14]|™10]M18| 2230|206 bMao|Mos M7 M1 |Mi3iMe M1 Vs
- B B~ B B B

Appendix 3 Formation of m;s by Veriable-wise Mapping on Map (m)

Original Map : A = : B = : C = : D= m
»‘f U1 ooy apfoo 1o oo o 0]foo 00 I
11 1 1 o o 1 1 io o 1 ¢l o oo of (0o o0 0 oll
1 1 1 1% !o 0 1 1J ‘.o 0O 1 0[]0 0 1 O |0 0 1 oi
L 1 1 1/ lo o v 10 o0 1 0ol lo o 1 0] 0 0.0

Appendix 4 Formation of M;5 by Variable-wise Mapping on Map(M)

Original Map +A= +~B= +C= +D=M;s
!o” 0 0 o ()'_6“1'"'1’] o1 T 1] o1 T 1] o v
;o o 0o o0lfo o1 1011 1 jo 11 b 1{
(0 0 0 0| {0 0 1 1! io 11 1’ 1 1 1 11 111
lo o 0o ol o o 1 1l lo 1 1 oal il a1l

Appendix 5 Term-wise-mapping on Map(m)
X=a+b+c+g+h=ABD+ABD+ABC+ACD+ACD

Original Map Mapping X Plotting Rearranging
olololo olvlola T T, 1 Ta
0O :€ e 0 0 }rY ! 8 10 ! : : ‘ “ c } b
.
010 6 }8 0|0 B 10 | ibg &
—_— L g
» oo olo o |a P : hih | la [700°°
Appendix 6 Term-wise mapping on Map(M)
Y = xyzu=(A+B+C)(A+C+D) (A+B+D) (B+C+D)
Original MaP Mapping Y Plotting Rearranging
111 |1 ‘31 a |1 IY Ill + + X 4 !
S.01 11 a |1 11 /1 + + xu | u
$§ Il 1 11 B IB |1 !1 + |+ y ly
—_— Space
111 1 11 1 |11 |y 1 t z -




98

Junso ToyobA

Appendix 7 Jointed Map(m, M)

Appendix 8 Seperated Map

By terms By symboles by : by +
ENE el s T B
B +
Xl € + ot |+ . .
b .
y {y g ot st +
hth |z - . ] R .
- + + i _l : : +
Space=0 Space=1
Appendix 9 Logical properties of Dual Map
logic value of variable-wise term-wise
between | operand / plotting mapping mapping
cell others | logic logic
Map(m) OR 1/0 AND | OR
Map(M) AND 0/1 OR ; AND




