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L. V. Ahlfors gave formulae on hyperbolic motions in his paper [1]. We shall

show the properties on Mobius transformatios in several dimensions.

1. Vectors in R® will be denoted by x=(xi, xs, ..., xn), the inner product by
zy, and the norm by |x|. The reflection of x in the unit sphere S*! is denoted by
x¥=zx/|x|2. We use the notation B for the unit ball in R?, B* for its exterior.
The latter should rightly include -, but since we shall be concerned mainly with
transformations that leave B invariant, we need not pay attention to the compactifica-
tion.

The full group M* of hyperbolic motions and reflections is generated by the
reflections in spheres or planes orthogonal to S»7!. The subgroup M obtained by
an even number of reflections is the group of hyperbolic motions.

We use the notation y(z) for its image of xr under yeM. We write v/ (x) for
the Jacobian matrix at x and |y’ (z)| for the linear magnification. In other words,
dy(x)=v’(x)dx and |dy(x)|=|v’(x)||dx|, the ratio being the same in all direc-
tions. Observe that |det v/ (x)|=|v’(z)|* The conformality implies furthermore
that |y/(x)| 'y’(x) is an orthogonal matrix, and consequently (y’/y’=|y’|2 (v’
is the transpose, and the unit matrix denoted by 1). If 0 is a fixed point, y(0) =

0, v/ is a constant orthogonal matrix.

2. As our basic notation we shall introduce
D Ty(x)=A-Q)Ax(x)=—A,(z%),

lyl2—1

where A,(x)=y+ FE=vEl

(x—y)

and Qv —fyf
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Note that
Q(¥)?=0(y) and (1-2Q(y))?=1.

For |y|<1, T,(x) represents a transformation in M which carries y to 0. If Shas

the same property, T,S? leaves 0 fixed and is hence an orthogonal transformation.

Thus the most general transformation in M (or M*) which carries y to 0 is of the

form U,T, with orthogonal U,.

From (1), we obtain

@ Ty @ =5 At (1-200) A -20(z—59).

In particular, we have
| Ty (0)|=1—|y|? and T}/ (»)|=1/1—|y|%

We denote the set of elements which fix 0 by M,. Let yeM—M,.

form U,T,, where y=v"1(0) and U,=eS0(n).
Noting that |U| =1, we can derive
Q) (@ =ITy/ (@] =A—1y1D/ly|*|x—y*|%
The chain rule proves that
ly@ | =ly@) =y =17 @ 27y I 72 x—yl.

Using (3), we have

1—|y(x) |2

7@ =150

Then v has the

The sphere I(y)={z|]|y’(x)| =1} is called the isometric sphere of v. We easily

see that the center of I(y) is y* and the radius is (1—|y|®)'’2/|y|. We denote

U,T, by v,. Represent by I(va), I'(7a), I(7s), I'(7s), I(¥a¥s) the isometric spheres

of Ya, Yo% Yo» ¥sY, Ya¥s respectively; by ga, go’, g &', ga» their respective

centers; and by ra, 7o/, s, 7/, 7ep their radii.

Ta Tp

Proposition 1. —————
op lg' —gal

=Tab.

Proof. Noting that T, '=T_,, we see
gar= (Ya7s) 71 (=)
= (UaToUpT) ()
= Ty (Us™(a*))
=T_»(Uy™*(a*))
=(1-20(=b6)A _»,*(Us™'(a*)).

A short computation leads to

4) A n* (U (@) 2= U (a*) + 6% 72 16%|2| Up™ (&%) |2+ 1 +26*Uy 7' (a*) }.
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It is easily seen that
g’ = 75(°°)
= UpTw(>)
® = Up(1-2Q(6))6*
= Up(—b%).
Together with (4), we have
rav’= | gas|?—1
= [An*(Ust(a*)) -1
= [Upy™3(a*) +6%|2{| 6% 2| U™ (%) |2+ 1= | Up M (a®) | 2= | 6% |2}
= |la*=Up(=6*)| 2(1—a|®)(A—6]D|a| 2| b]

L rar?

T g —gal?

Our proposition is now completely proved.

ra rb
— =Tab.
| gs— gao]

Proposition 2.

Proof. In Proposition 1, we replace r, and r, by r,”' and r.r,, respectively.

The fact that r,=r,"! leads to our conclusion.

Proposition 3. Let Q, be the sphere with the radius p at the origin 0. If the
centers of all isometric spheres lie in Q,, then the radius of isometric sphere is less

than 2p.

Proof. By Propositions 1 and 2, we have
Igbl _ga,! ’
Since the centers of isometric spheres lie in Q,, we see that |gu—gsl<2p and

|gav—gs| =

gy’ —gal<<2p. Thus we have
(6> ry << 2P.

Proposition 4. Under the same assumption as in Proposition 3, the number

of isometric spheres with radii exceeding a given positive quantity is finite.

Proof. Let I(v,) and I(y,) be any two different isometric spheres with radii
greater than %, a positive quantity. Then v.7, is not the identical transformation,

and from (6),

Taly k2

| go _ga’:*;_:b 2P .
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The distance between the centers of isometric spheres with radii exceeding £ has
thus a positive lower bound. Since the centers of all such spheres lie in the sphere

-

Q,, their number must be finite.
Using Propotition 3, we easily show next two propositions.

Propositions 4. The transformations of discrete subgroup of M are denumer-
able.

Proposition 5. Given any infinite sequence of distinct isometric spheres I(7. (1 ),
I(¥a 2 ), ... of transformations of discrete subgroup, the radii being ri, rs, ..., then
lim r,=0.

00

Proposition 6. Let R and r be the radii of two spheres. Let 4 be the distance

between the centers of these two s“pheres. Then an element yeM (or M*) preserves

_ (R4r2—d2)?
N 4R? r?

K

Proof. The transformation y is represented by U,T,. Obviously U, preserves
K. Therefore we have only to show that 7', preserves K. Let a and & be the centers
of two spheres, respectively. We consider the images of two spheres under T',. We
denote the radii of resulted spheres by R’, r’, respectively; by «, B their respective
centers. We see that

R2= R*(1—1y1®)/(lal?|y]1?— R*|y|*—2ay+1)?,

r2 =r*(1=|y[D/(b1*y|?—r*|y|*—2by+1)%,

a = —(la|®’y—R¥y—2(ay)y—a+|yl*a+y)/(la|*|y|*—R*|y|*—2ay+1), and

B = —(bl2y—r2y=2(by)y—b+1yI?6+y)/(16]?|y|*—7*|y|*—2by+1).

The direct computation yields our conclusion.

| 21— 3] . | 22— 24|

: and call this the cross-ratio.
|x1—x,] | x2— 3|

We define [xi, x2, x3, x,] by

Proposition 7. An element y=M preserves the cross-ratio.

Proof. We have only to show that T, preserves the cross-ratio. Noting that

la¥—b%|=|a—b|/|a||b|, we obtain

* _ [y*|2—1] 21— 22|
(D 1AM @) —AF )| = T

From (7), we have
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@) Ty (z0)=Ty*(x2) | = (1 =2Q(3)) (A*(z1) — A*(x2)) |

__Hy*2=1] [z1— 2|

| 21— y*| [22—y*|

By (8), we obtain [Ty(xl), Ty(l‘z), Ty(xs), Ty(x4)]=[x1, X2, X3, 1‘4].

We easily see next proposition.

Proposition 8.
(1) 1Y el =17 ()|
(D) Far) @) =17 (ro(X)) | |7 (2)].

By Proposition 8, we have

Proposition 9. v transforms Int (I(y)) (resp. Ext (I(7))) into Ext (I(y™1))
(resp. Int (I(v7*)) ) and 77! transforms Int (I(y™1)) (resp. Ext (I(y™)) into Ext
(I(y)) (resp. Int (j(7)) ). If I(y.) and I(y.’) are exterior to one another, then

I(yays) 1s contained in I(y).

Let G be a discrete subgroup of M. Assume that GANMe={1}. In other words,
0 is not fixed point. Then every element in G has an isometric sphere.
We shall consider the set
D= (ﬂaﬂ_mExt (M) )HNB.

It is easily seen that
D={x:|y(x)] <1 for y&eG-{1}} N B
={z ! |y(x)| > |z| for yeG—{1}} N B.

Following the methods of Ford [2] and Lehner [3], we can prove that

(1) No two points in D are equivalent under G.

(2) Every point in B has its equivalent point in D.
Properties (1) and (2) characterize D as a fundamental set. As an intersection of
half-spaces it is convex in the non-euclidean sense. Therefore D is a non-euclidean
polyhedron and it is referred to as the Poincaré fundamental polyhedron of G with

respect to the origin.
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