Notes on Möbius Transformations in Several Dimensions

Shigeyasu Kamiya

Department of Mechanical Science, Okayama University of Science Ridai-cho 1-1, Okayama 700, JAPAN (Received September 24, 1982)

- L. V. Ahlfors gave formulae on hyperbolic motions in his paper [1]. We shall show the properties on Möbius transformatios in several dimensions.
- 1. Vectors in \mathbb{R}^n will be denoted by $x = (x_1, x_2, \dots, x_n)$, the inner product by xy, and the norm by |x|. The reflection of x in the unit sphere S^{n-1} is denoted by $x^* = x/|x|^2$. We use the notation \mathbf{B} for the unit ball in \mathbb{R}^n , \mathbb{B}^* for its exterior. The latter should rightly include ∞ , but since we shall be concerned mainly with transformations that leave \mathbf{B} invariant, we need not pay attention to the compactification.

The full group M^* of hyperbolic motions and reflections is generated by the reflections in spheres or planes orthogonal to S^{n-1} . The subgroup M obtained by an even number of reflections is the group of hyperbolic motions.

We use the notation $\gamma(x)$ for its image of x under $\gamma \in M$. We write $\gamma'(x)$ for the Jacobian matrix at x and $|\gamma'(x)|$ for the linear magnification. In other words, $d\gamma(x) = \gamma'(x) dx$ and $|d\gamma(x)| = |\gamma'(x)| |dx|$, the ratio being the same in all directions. Observe that $|\det \gamma'(x)| = |\gamma'(x)|^n$. The conformality implies furthermore that $|\gamma'(x)|^{-1}\gamma'(x)$ is an orthogonal matrix, and consequently $|\gamma'(x)|^{-1}\gamma'(x)|^{-1}\gamma'(x)$ is an orthogonal matrix, and consequently $|\gamma'(x)|^{-1}\gamma'(x)|^{-1}\gamma'(x)$ is a constant orthogonal matrix.

2. As our basic notation we shall introduce

(1)
$$T_y(x) = (1 - Q(y))A_y*(x) = -A_y(x^*),$$

where $A_y(x) = y + \frac{|y|^2 - 1}{|x - y|^2}(x - y)$

and
$$Q(y)_{ij} = \frac{y_i y_j}{|y|^2}$$
.

Note that

$$Q(y)^2 = Q(y)$$
 and $(1-2Q(y))^2 = 1$.

For |y| < 1, $T_y(x)$ represents a transformation in M which carries y to 0. If S has the same property, T_yS^{-1} leaves 0 fixed and is hence an orthogonal transformation. Thus the most general transformation in M (or M^*) which carries y to 0 is of the form U_yT_y with orthogonal U_y .

From (1), we obtain

(2)
$$T_{y'}(x) = \frac{1 - |y|^2}{|y|^2 |x - y^*|^2} (1 - 2Q(y)) (1 - 2Q(x - y^*)).$$

In particular, we have

$$|T_y'(0)| = 1 - |y|^2$$
 and $|T_y'(y)| = 1/1 - |y|^2$.

We denote the set of elements which fix 0 by M_0 . Let $\gamma \in M - M_0$. Then γ has the form $U_y T_y$, where $y = \gamma^{-1}(0)$ and $U_y \in SO(n)$.

Noting that |U|=1, we can derive

(3)
$$|\gamma'(x)| = |T_{y'}(x)| = (1-|y|^2)/|y|^2|x-y^*|^2$$
.

The chain rule proves that

$$|\gamma(x)| = |\gamma(x) - \gamma(y)| = |\gamma'(x)|^{1/2} |\gamma'(y)|^{1/2} |x - y|.$$

Using (3), we have

$$|\gamma'(x)| = \frac{1 - |\gamma(x)|^2}{1 - |x|^2}.$$

The sphere $I(\gamma) = \{x \mid |\gamma'(x)| = 1\}$ is called the isometric sphere of γ . We easily see that the center of $I(\gamma)$ is y^* and the radius is $(1 - |y|^2)^{1/2}/|y|$. We denote $U_y T_y$ by γ_y . Represent by $I(\gamma_a)$, $I'(\gamma_a)$, $I(\gamma_b)$, $I'(\gamma_b)$, $I(\gamma_a\gamma_b)$ the isometric spheres of γ_a , γ_a^{-1} , γ_b , γ_b^{-1} , $\gamma_a\gamma_b$ respectively; by g_a , g_a' , g_b , g_b' , g_{ab} their respective centers; and by r_a , r_a' , r_b , r_b' , r_{ab} their radii.

Proposition 1.
$$\frac{r_a r_b}{|g_b' - g_a|} = r_{ab}.$$

Proof. Noting that $T_b^{-1} = T_{-b}$, we see

$$egin{aligned} g_{ab} &= (\gamma_a \gamma_b)^{-1}(\infty) \ &= (U_a T_a U_b T_b)^{-1}(\infty) \ &= T_b^{-1}(U_b^{-1}(a^*)) \ &= T_{-b}(U_b^{-1}(a^*)) \ &= (1 - 2Q(-b)) A_{(-b)}^{*}(U_b^{-1}(a^*)). \end{aligned}$$

A short computation leads to

$$(4) ||A_{(-b)}*(U_b^{-1}(a^*))||^2 = ||U_b^{-1}(a^*) + b^*|^{-2}\{|b^*|^2||U_b^{-1}(a^*)|^2 + 1 + 2b^*U_b^{-1}(a^*)\}.$$

It is easily seen that

$$g_b' = \gamma_b(\infty)$$

$$= U_b T_b(\infty)$$

$$= U_b (1 - 2Q(b))b^*$$

$$= U_b (-b^*).$$

Together with (4), we have

$$\begin{split} r_{ab}^2 &= |g_{ab}|^2 - 1 \\ &= |A_{(-b)}^*(U_b^{-1}(a^*))|^2 - 1 \\ &= |U_b^{-1}(a^*) + b^*|^{-2} \{|b^*|^2 |U_b^{-1}(a^*)|^2 + 1 - |U_b^{-1}(a^*)|^2 - |b^*|^2 \} \\ &= |a^* - U_b(-b^*)|^{-2} (1 - |a|^2) (1 - |b|^2) |a|^{-2} |b|^{-2} \\ &= \frac{r_a^2 r_b^2}{|g_b' - g_a|^2} \,. \end{split}$$

Our proposition is now completely proved.

Proposition 2.
$$\frac{r_a r_b}{|g_b - g_{ab}|} = r_{ab}.$$

Proof. In Proposition 1, we replace r_a and r_b by r_a^{-1} and $r_a r_b$, respectively. The fact that $r_b = r_b^{-1}$ leads to our conclusion.

Proposition 3. Let Q_{ρ} be the sphere with the radius ρ at the origin 0. If the centers of all isometric spheres lie in Q_{ρ} , then the radius of isometric sphere is less than 2ρ .

Proof. By Propositions 1 and 2, we have

$$|g_{ab}-g_b|=\frac{r_b^2}{|g_{b'}-g_a|}.$$

Since the centers of isometric spheres lie in Q_{ρ} , we see that $|g_{ab}-g_b|<2\rho$ and $|g_{b'}-g_a|<2\rho$. Thus we have

(6)
$$r_b < 2\rho$$
.

Proposition 4. Under the same assumption as in Proposition 3, the number of isometric spheres with radii exceeding a given positive quantity is finite.

Proof. Let $I(\gamma_a)$ and $I(\gamma_b)$ be any two different isometric spheres with radii greater than k, a positive quantity. Then $\gamma_a \gamma_b$ is not the identical transformation, and from (6),

$$|g_b' - g_a| = \frac{r_a r_b}{r_{ab}} > \frac{k^2}{2\rho}$$
.

The distance between the centers of isometric spheres with radii exceeding k has thus a positive lower bound. Since the centers of all such spheres lie in the sphere Q_{ρ} , their number must be finite.

Using Propotition 3, we easily show next two propositions.

Propositions 4. The transformations of discrete subgroup of M are denumerable.

Proposition 5. Given any infinite sequence of distinct isometric spheres $I(\gamma_{a(1)})$, $I(\gamma_{a(2)})$, ... of transformations of discrete subgroup, the radii being $r_1, r_2, ...$, then $\lim_{n\to\infty} r_n=0$.

Proposition 6. Let R and r be the radii of two spheres. Let d be the distance between the centers of these two spheres. Then an element $\gamma \in M$ (or M^*) preserves

$$K = \frac{(R^2 + r^2 - d^2)^2}{4R^2 r^2}.$$

Proof. The transformation γ is represented by $U_y T_y$. Obviously U_y preserves K. Therefore we have only to show that T_y preserves K. Let a and b be the centers of two spheres, respectively. We consider the images of two spheres under T_y . We denote the radii of resulted spheres by R', r', respectively; by α , β their respective centers. We see that

$$R'^2 = R^2(1 - |y|^2)/(|a|^2|y|^2 - R^2|y|^2 - 2ay + 1)^2,$$

$$r'^2 = r^2(1 - |y|^2)/(|b|^2|y|^2 - r^2|y|^2 - 2by + 1)^2,$$

$$\alpha = -(|a|^2y - R^2y - 2(ay)y - a + |y|^2a + y)/(|a|^2|y|^2 - R^2|y|^2 - 2ay + 1), \text{ and }$$

$$\beta = -(|b|^2y - r^2y - 2(by)y - b + |y|^2b + y)/(|b|^2|y|^2 - r^2|y|^2 - 2by + 1).$$

The direct computation yields our conclusion.

We define $[x_1, x_2, x_3, x_4]$ by $\frac{|x_1-x_3|}{|x_1-x_4|}$: $\frac{|x_2-x_4|}{|x_2-x_3|}$ and call this the cross-ratio.

Proposition 7. An element $\gamma \in M$ preserves the cross-ratio.

Proof. We have only to show that T_y preserves the cross-ratio. Noting that $|a^*-b^*|=|a-b|/|a||b|$, we obtain

(7)
$$|A_y^*(x_1) - A_y^*(x_2)| = \frac{||y^*|^2 - 1| |x_1 - x_2|}{|x_1 - y^*| |x_2 - y^*|}$$
.

From (7), we have

(8)
$$|T_{y}^{*}(x_{1}) - T_{y}^{*}(x_{2})| = |(1 - 2Q(y))(A_{y}^{*}(x_{1}) - A_{y}^{*}(x_{2}))|$$

$$= \frac{||y^{*}|^{2} - 1||x_{1} - x_{2}|}{|x_{1} - y^{*}||x_{2} - y^{*}|}.$$

By (8), we obtain $[T_y(x_1), T_y(x_2), T_y(x_3), T_y(x_4)] = [x_1, x_2, x_3, x_4].$

We easily see next proposition.

Proposition 8.

- (i) $|(\gamma^{-1})'(\gamma(x))| = |\gamma'(x)|^{-1}$.
- (ii) $|(\gamma_a \gamma_b)'(x)| = |\gamma_a'(\gamma_b(x))| |\gamma_b'(x)|.$

By Proposition 8, we have

Proposition 9. γ transforms Int $(I(\gamma))$ (resp. Ext $(I(\gamma))$) into Ext $(I(\gamma^{-1}))$ (resp. Int $(I(\gamma^{-1}))$) and γ^{-1} transforms Int $(I(\gamma^{-1}))$ (resp. Ext $(I(\gamma^{-1}))$ into Ext $(I(\gamma))$ (resp. Int $(I(\gamma))$). If $I(\gamma_a)$ and $I(\gamma_b)$ are exterior to one another, then $I(\gamma_a\gamma_b)$ is contained in $I(\gamma_b)$.

Let G be a discrete subgroup of M. Assume that $G \cap M_0 = \{1\}$. In other words, 0 is not fixed point. Then every element in G has an isometric sphere.

We shall consider the set

$$D = (\bigcap_{\gamma \in G - \{1\}} \operatorname{Ext} (I(\gamma))) \cap B.$$

It is easily seen that

$$D = \{x : |\gamma'(x)| < 1 \text{ for } \gamma \in G - \{1\} \} \cap B$$
$$= \{x : |\gamma(x)| > |x| \text{ for } \gamma \in G - \{1\} \} \cap B.$$

Following the methods of Ford [2] and Lehner [3], we can prove that

- (1) No two points in D are equivalent under G.
- (2) Every point in \overline{B} has its equivalent point in \overline{D} .

Properties (1) and (2) characterize D as a fundamental set. As an intersection of half-spaces it is convex in the non-euclidean sense. Therefore D is a non-euclidean polyhedron and it is referred to as the Poincaré fundamental polyhedron of G with respect to the origin.

References

- [1] L. V. Ahlfors, Hyperbolic Motions, Nagoya Math. J. 29 (1967) 163-166.
- [2] L. Ford, Automorphic functions, 2nd ed., Chelsea, New York, 1951.
- [3] J. Lehner, Discontinuous groups and automorphic functions, Amer. Math. Soc., Mathematical Surveys, No. 8, Providence, 1964.