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In previous papers?, we have developed a theory of functions of a biquaternion
variable and have shown that regular functions of a biquaternion variable satisfy
Maxwell’s equations in a similar sense as analytic functions of a complex variable
satisfy Cauchy-Riemann’s equations.

Contrary to the quaternions theory, in our theory, the boundary condition and
the initial condition for a regular function are fundamentally different so that we
have to introduce two different types of regular functions to deal with a boundary

value problem or an initial value problem.

(X).

We introudce regular polynomial functions nlnzns(X) in the real biquaternion

1. Derivation of regular polynomial functions Py oy,
domain through the following generating functions.

Let a generating function F.(X, ¢) be defined as:

(1) Fo (X, )=[K(X, )*]=[tz,+ (te2)]"
=[t1(x1+z0e1) +t2(x2+20€2) + ta( T3+ x0e3) ]*

where e1, 2, €3 are the unit biquaternions satisfying the same commutation relations
as Pauli’s matrix: e?=1, (k=1, 2, 3), exes= —eiex=ien, i=+/—1, and (k, I, m) is
an even permutation of (1, 2, 3), ¢ and z are defined by t=t1e1+t2e2+4t3es, =111+
X282+ T3€3.

Expanding F.(X, ¢) in power series of # (i=1, 2, 3), we find: the following
definition of P, 1nzﬂa(X):

(2) KX, t)= > nl Py a (XD)ti™1t o 2857,
nytngtng=n 17273
We call the polynomials Pnlnzna(X) as “Fueter’s polynomials”?. We can see
easily from (1) that K*(X, ¢) is both side D, regular:

(3) D.Fa(X, £)=0, K*(X, £)D,=0,
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0 a 0 0 3 0
where D, = —a};——aéx—l*ezb}; e #goepm-

Proof : We see that:

3 m m
(4) Dsz(X’ t)= 2 ekga—Km’—‘ Z Km—rtKr—l__ Z i: eiKm—rtiKr—l
=" k=0 Zi -

r=1 r=11i=1
m
=3 [Km7tKr 1 —tKm1]=.
r=1 - -
The last equality is obtained by that K and ¢ commute: XK t=tK. The same is

true for K*D,=0.

Since D K»=0 and ¢, are independent vaiables, we find each 3(X) should

nlnzn
be D, left regular:
(5) Dq P,,l,,z,,a(X)=0.

Similarly we have the relation: P, . (X)=0.

2. Exponential functions.

Let an exponential function be defined as:
6 exx o= 514 (1e2)]"
n=0 . - - =

Obviousely, from (3), the above exponential function is both side D, regular:

i££x0+(!'£)]= i[_t.l‘o+(£'£)] =
7 Dge € D,=0.

8. Fourier representation of the regular functions.
From (1), we see that the exponential functions defined by (6) is a special solu-
tion of D,®(X)=0. A general solution of D,®(X)=0 can be obtained by a superposi-

tion of the special solutions exp (iK(X, ¢) of (6) over the parameters ¢, ¢z, #3:
~+-00
8 o(X) = fffei fixo*'(E'E)JA(E)dtldtzdta,

where A(t) is any function of the parameters ¢, ¢z, ;3 and not necessarily be a scalar

function but is a biquaternion function satisfying a certain constraint :
folN(A)ldtldtzdt3<+oo, where N(A) is the norm of A: N(A) = ap?—a:?—
azz_—o—oaaz, A=:i;}°ape,, and |N| is the absolute value of N.
The initial condition for #(X) is given by putting x,=0 in (8) as:
+oo
(9) O(X)|zpm0=G(x)= fffe‘ (=101*+%62% 73¢9 A(t)dtrdtadlts

When G(z) the initial condition for the function @(X) is given, A(¢) can be

determined by Fourier integral theorem as:
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0 AW = gm0 [ [ [ ee06@dndrds

Inserting the expression (1() for A in (8}, we find:
+o00
1 OCX) =5 f f fei[’-”0"-(E'i)]G(E)dtldtzdtadrldrzdn.

An example of the initial value problem.

Let the initial value of F(X) for x,=0 is given by:

=g, for 0<|r|<a, g is a constant vector biquaternion,
FOX) 0= (@)}

=0, otherwise.

Using the formula given by (11) and through some calculations, we find :

+ oo

2
F(X:A)= sz fo % (sin at —at cos at) [tx cos tzy+

7 r\
(%} sin tx, [sin tx —tx cos tx]]

where z=v/x:2+ 222+ 232

4. Series expansion.

For the function F(X) mentioned above, when the initial value of F(X) for

z,=0 is given as a uniformely converging Taylor series of z, for |N(X)| <1 as

+00 (ni)

19 F(X)|zmo=A(x)=X X Z1™12,"225"3Cr n g

n=0 ny+np+ng=n
then, F(X) is uniquely determined as

+o00 (ni)
(13) F(X)= 2 P Pnjn-_.n3(X)Cnln2n3

n=0 ny+ng+ng=n

where
"F(X)

a3 §.1"1029"20£3"3

is derived from (12.

5. Regular functions for boundary value problems.

The P, , ,,(X) introduced in the previous sections are suited for the initial value
problem and the formulas obtained are not accessible readily to the use of boundary
value problems.

We introduce the following generating functions which are an extension of
K»(X; t) introduced by equation (1) in the first section.

Let K, (#=0, 1, 2, 3) be defined as

(14) K#:(XT)O—(Te;z>+-rp)
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and K, is the same as K of section 1 and for example:
K;=t0(x0+x1t1)+t2[x2+e2(e1x1)]+t3[x3+e3(e1x1)]
By the same procedure as the previous sections, we obtain similar results to

those for P 3'(X).

We can shovlvzthat
15 D:K (X, T)=0.
Similarly, the exponential functions are derived as:
16 #(X; to, t2 t3)=exp[iKi]
and ¢ satisfies D,¢=0.

A general solution of the above equation is:

16 o(X) = fff exp[iKi1A(to, ta, ts)dtodtsdts.

The domian [T,3] of the integration over ¢, t», ts is determined by the conver-

gence of the integral which will be described as:

+m
f f f ¢ a1 51| Aty ta ta) |dtsdts<+ oo

fo [ A(to, t2, t3)|dto<<+co.

Let a boundary condition for a left D, regular function ®(X) be given at z,=0

by a Fourier integral form as:
“+ oo

OO syes=Glza 7 2= [ [ [ eteunresarnss Alty, to, t)dtodtsdty

then @(X) is given as:
1 .
m o(X) ="8rs f exp[i{to(xo—1o) +t2(x2—72) +t3(23—75) +
to-t+taea+tses ) 1drodradrss A(ty, ta, t3)dtedtzdts.

A simple example of boundary condition.

We deal with a two spatial dimension where the system does not depend on the

third coordinate z;:

+00
1w . —
qS(xO, o, _2:3) = o7 etkoTg eita (Fa7t9) ol (bgtHigey) 2y g(ko,xz)dtodfz
—00

Now we impose the boundary condition :
g(ko, t2)=€2: for |x2|<dg,
=0: for |z;]>a>0,
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and the initial condition satisfies the “vector condition” :
g(ky, x2)=g(ky, x2)e; which is perpendicular to (k,-+te2)erx:.

Putting those constraints in eq. (17), we have:

400 ap
¢ikgo ‘ .
¢ (xqy, 13, xz):~27r f f elts (F27rp) ol Ciotigr) 4%y g (ky, xp)ezdtidTs
Tg—00— '2.“

Putting the expression in a real function form as:

o kg
f fCOS[tZ(Iz—Tz>][COS flxi+ia’ersin f'x1]—

sy =< ] Blegsin[ta(z2—72)Isin f 1 ldtedes
+00 ay
[ [ coslt2xa—72)]Lcosh fz1+aes sinh f:] +
oA

1Beg sin[ t2(x2—75) ] sinh fx1dtdr,.
where f, f’ are given below and the range of variables 7, and 7, are £,=0 to as,
Te=—c0 t0 +oo, a=ik/f, &' =ik/f', B=ts/f, B'=t/f" and f=H\/—kF+t?, for
—k2+1,2>0, and f/=\/k?—12, for k2—1,2>0.

6. More regular functions (the second kind).

We introduce regular functions some of which are regular in a domain including
INCO =+ .
Let L.(T) be defined as:

ik 3 0°

18 La(T)=C0(T™), Dh= gi3— T 50 T=tott.
Simple calculations show :

19 La(T)=—AL(n+D)T4+nT™ VT 4 eeeee +(n—r+1)T* (T +

ERRLRELE +(T )]

where T*=t,—t, is the hyperconjugate of 7.
Then, we can show that

(el La(YX)]=Y'[D.(L].T"2)]=0.
Therefore, L, is a polynomial of n-th degree in z, and is D, left regular. Thus,

as described in the previous section, L,(YX) can be expanded by a polynomial of

Pn1n2n3(X) as:
— N *
W La(YX)= D P, OR 0, (V)
where
* —_— \,,,4._‘—g’"l—p,v__, f— i
R nlnzns(Y) - 5"1x16"2x26"3x3 Ln(XY>, n=n;+ Nz Ng.

Since L.(YX)D,=0, taking complex conjugate of the last equation and considering
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that D} =D,, we have:
DyR (Y)=0.

An explicit expression for R

LWL
(Y) as a function of yx is given by :

nnn

(V)= AL+ D) D&y, Yoy, e, Yon Tey, Yo, e, (e, T+

nnn
1"2"3 n

vvvvvv - *ae + essasns
ok Be, Yoe, Yo | Yoy YY)

+ X (e,k Ye e, Y)']
k) n

Now, define

Q2 ()= XINCX)TIR, ., (27D,

1m273

we have
ny +n2+n3=n

o) CLLCYXOMYT= B Py, (OQ8 0, (YD

1"2"3
Then, Q, s
Define N, , . (X™)=XN(X)P, n ..

C=-LCYX)¥1Y= 5 Ry, (KON 2 (Y.

Comparing this equation with (21), we obtain the relation between Qs and N*¥’s

(X) is the Fueter’s polynimial of the second kind?®.

(X), we have the following equation:

as follows:

innzn3< Y) -

’1’2’3( Y)a*[mngng, rirersl,

where a* is the complex conjugate of a: which are given by eq (22).
an

. _ 0 o"
02 a[nmineng; rirers]= ay{layz’zaysrs[ 021 ™M0T 20253 Kn(YX)]

Using those regular polynimal functions P, Q, R, N, we can expand [J.[(Y—-X)™]

as a series of those polynomial functions.
[1]1 For |[N(X)|<IN(Y)|.

We have in this case:

LL(Y=X)71= 5 Y LLXY )]
o0 ‘n1+n2+n3-—n
=n§0 ("zi; ‘"1‘"2" (X)innznch)
Taking complex conjugate and using (13), Q’s can be obtained as:

(v =[ZLLE =Xy oy, ey -nyme).

0x1™0x2"20x3™3

[2] For |N(X)|>|N(Y)|.

Q*

7 nang

WLV —X) = S

o Mitnztnz=n

=% % (=DNu. (OR:, . (Y)

n=0 (ng)

where
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(X)=X[N(X)I P, (X7
(X)=X"[N(X)1"Q,

"1”2"3

-1
1"2"3 1"2"3(X J-

The details of the derivation of the above relations will be given in Ref. (3).

7. Extended regular polynomial functions.

The polynomial functions discussed in previous sections are suitable for dealing
with an initial value problem but are not convenient to find solutions for a given
boundary condition. To overcome with the difficulty, we extend the theory to include
polynomial functions which are regular and are able to deal with the boundary
value problem.

We rewrite the K, function defined by (14) as follows:

P KX, D)= T tr e —(een.]
where t,,,=t,, z,..=1,, €,.,=e, where p+v=p (mod. 4), (0=0, 1, 2, 3).
Then,

ngt+ny+ng+ng=n

W KX T)= 2 nl Pors g (XDtamot i itg"2t s
and
B PLL 0=t T (2, &2y (5, — € )
ngR Rang N n! G a a1 “n %n
where
1 e ez 2
o ey=|" L T T |-
€2 +ieg 1 —1ie
es —iez +iex 1

We can see from (25) and (26) that Pn(",i nzna(X)zo for n,540. From equation
(24) that P,f",), inny (XD are left D regular:
@ DPynaa (X)=0, and P2% | (X)D=0.

From the definition (25), we find for P:

Vg mo! ng!
(#) _ Np.ni.n2.n3. I o
n0n1n2n3(X) o T T Toomixtar, 30n,

From equations (23) and (24), we find:

a (.11) (€D)

0, nonlnzna(X) P"O_l nyngng (X), (nﬂz()),

0 ) )

alenonanns(X)=Pno,,1_1, nyny(X) and so on for n, and n,.

Also, we get from (28) that
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o" ()]

: X)=0 _0 _0 _0
3xo"08x1"16xz”28x3"3 ""0"1"‘2”3( ) ToRg 71y TaMa T3N3’

where ry+ri+r2+ry=ny+ni+nz+ng.

We can easily extend the formulas valid for P, , , (X) to P"(:;ﬂz"s (X).

In a similar manner as that derived the series expansion described in 4., we
can prove the following theorem. |
Theorem. Let a D left regular function of n-th degree polynomial F(X) which

satisfies the following boundary condition at x;=0 given by a Taylor expansion as:

710+712+’"3=7’L n‘

F(X)] 4,20 =G(X) =

2 i .7C Totox"exs™s,
(ng, nz, n3) nolnglng! ~ ™23

can be expressed uniquely by a polynomial of P,f;izns(X ) as
No+ng+ng=n

F(X)= = )P(” (xX)c,

’
(ny, g, ny) 072”3 0"2"3

where

_r 9"GX) _
Cnonzn3 - [ 6$6h0 a’zzn‘z‘ 6"%’37{3*'] , and n —ﬂo+ﬂ2+ ng.

The summation is taken over all different partitions of n into three integars

Ny, nay, ng . 0Lm<Ln.

8. Derivation of the solutions of Maxwell’s equations from regular functions.

In order that a regular function of a biquaternion variable which we have derived
in the previous sections should satisfy Maxwell's equations, the function should
satisfy an initial condition.

Let the regular function be F(X), then the “vector condifion” F(X)=—-F*(X),
is expressed as

FOO g0 =G(2) = —F* (X1 -0 =g ().

Thus, when an initial condition for the solution of Maxwell’s equations is given,

the initial value of the solution is given as a vector function, we can express the

solution satisfying the initial condition by equation (11).
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3) A detailed account of the theory in a book form will be available whortly: “The
Quaternionic formulation of Classical Electrodynaics”.



