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Synopsis: Professor T. Mitsui set the problem of finding conditions
that a square matrix with integral entries is a quadratic
residue modulo a prime. We solve this problem in the

case of order 2 and further consider some related topics.

O. Introduction

Throughout this paper, the number p always denotes an odd prime. Denote by
M(n, Z) the ring of nxn matrices with integral entries. Let A be a matrix in
M(n, Z) such that AFO(mod p). A is called a quadratic residue modulo p if there
exists a matrix X in M(n, Z) such that X2=A (mod p). A is called a quadratic
non-residue modulo p if there exists no such X. At the informal meeting of number
theory held at the Gakushuin University in 1977, Professor T. Mitsui set the
problem of finding conditions that A is a quadratic residue modulo p. In the first
section 1, we shall solve this problem in the matrix ring M(2, Z).

Now, let F, denote the finite field of order p. Define three sets R, R and SO(2)

as follows:

R={(_% 2)] a, bEF,},

R ={Y=R|det Y0}
and SO(2)={YeR"|det Y=1}.
Then it is easy to see that R is a commutative ring and R* is a commutative
group containing SO(2) as a subgroup. In the last section 2, we shall prove some
properties of these sets.

The following additional notation will be used in this paper. For any integer
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a, we define the symbol ¥(a) by the relations

?

0 if a=0 (mod p),

where (;—) is the Legendre symbol. As usual, Z will denote the ring of rational

2(a)= (a> if as£0 (mod p),

integers. Denote by M(2, F,) the 22 matrix ring over F,. Furthermore, if S

is a set, we write |S| for the cardinal number of §.

1. Mitsul’s problem in M(2, Z)

THEOREM 1. Let A be a matrix of order 2 with integral entries. Then A is a
quadratic residue modulo p if and only if A satisfies (1) and one of (11) in the following
statements.

(I) x(det A)=0 or 1.

This implies that the congruence X?=det A (mod p) has integer solutions. In the
following, k will denote a root of this congruence.

(1) (i) x(tr A+2k)=1.

(ii) x(tr A—2%)=1.
(iii) AEi(é 2) (mod ).

PrROOF. Put A = (? 3) Clearly, A is a quadratic residue modulo p if and

only if the simultaneous congruences

xz_*_yz_—r:a (1)

(z+w)y=b (2)
*) (mod p)

(xﬂ-—w)z};zc (3)

s yed )

have integer solutions.
Now, let us suppose that there exist integers z, y, z, w satisfying the congruences
(*). Then we can easily show that
(xw—yz)2=det A (mod p),
which implies x(det A)=0 or 1. Hence, we know that
rzw—yz=-+k (mod p).
In the case rw—yz=k (mod p), we obtain from (1) and (4),
a+d+2k=(x-+w)?,
and so
tr A+2k=(x+w)? (mod p). (5
If tr A+2£=0 (mod p), then we have x(tr A+2k)=1.
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If tr A+2£=0 (mod p), then from (5), we get
r+w=0 (mod p).
Therefore, from (1), (2), (3) and (4), we find that
a=d=-—k and b=c=0 (mod p),
which imply

A=(h 2,) (mod p).
In the case sw—yz=—*% (mod p), we obtain
2(tr A—2)=1 or A:(é 2) (mod p)
as can be seen by using the same way as above.

Conversely, let us suppose that the conditions (I) and (i) of (II) are fulfilled.
Then there exists an integer m such that m?®=a-+d-+2k and m +0 (mod p). So we
can find an integer n such that mn=1 (mod p). We put

rx=n(a+k), y=nb, z=nc and w=m—n(a+k),
which satisfy the simultaneous congruences (*). The proof of other cases are similar

to that of the above, and we omit them.

2. Some properties of R, R* and SO(2)
LEMMA 1. R :{ pr—1 if p=3 (mod 4),
(p—1)2 if p=1 (mod 4).

Proor. Let i denote a root of the equation x2+-1=0 in the algebraic closed
field of F,. Then i belongs to F,2, where F,2 is the finite field of order p?. We
define a homomorphism

¢ : R — Fp-~
by the relation

t,'r((_z Z))za |- bi.
If p==3 (mod 4), then 7 do not lie in F,, so that ¢ is an isomorphism. Therefore,
we get |R | =p>—1.
If p=1 (mod 4), then { is in F,. Thus the number of (a, &) satisfying the
equation
a?+62=0,
a, b&F,
is 2p—1. So we have |R |=p2—(2p—1)=(p—1)2
LEMMA 2. | SO(2)] =p——( ;1)

PrRoOF. In the following, we identify F, with Z/pZ and naturally regard x
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as a function on F,.

Clearly, ZF x(1—a?):== ZF x(1+a)x(1—a)
acl ) ae=rky
l—a
== Z o
aEFl)X<1+a>
a4=-—1
= 3 x(b)
b=Fy
b+—1
=—x(-1)

-1
- —( ' p) )
On the other hand, we know that

2 x(1=a?)|=p—2.
aEFp

Hence, from the definition of SO(2), we obtain
1SO(2)|=2 X 1+2
aEFp
X(1—a?)=1

= 3 {x(1—a®)+|x(1—a?)|}+2
dEFp

-1
——p~( P )
PROPOSITION. (1) If p=3 (mod 4), we have
R=F,z,

R =F "
and R*/SO(2)=F,".
(2) If p=1 (mod 4), we have
R =F,*xFy~
and SO(2)=F,". .

PROOF. Assume that p==3 (mod 4). Then R“==F,2* as we have seen in the proof
of Lemma 1. Since a2+52=0 and q, bF, imply a=54=0, we have R=F,z. Noticing
that |R*/SO(2)|=p—1 by Lemmas 1 and 2, we can easily deduce R*/SO(2)~F,".

Now assume that p=1 (mod 4). Let ¢ be the homomorphism defined in Lemma
1. Then the restriction of ¢ gives a homomorphism from SO(2) to F,*. It is easily
verified that this is an isomorphism. Since |R*/SO(2)|=p—1, we readily find that
R</SO(2)=F,".

Putting

(=8 2)'=(_5 ),

n
ap,= > ( -1 )’ca”‘z"bzk
0<2k<n <2k')

we obtain



On some properties of 2xX2 integral matrices 13

and

b, = > (2,&7—1%— 1)( —1)kgr 2T 1pzAAL,

1<{2k+1-n
which yield

sy

If (_Z 3) belongs to R’, then we get

(=5 2706 1)

Thus the order of any element of R* divides p—1. By the fact that R /SO(2)==F, ",
we see that R'/SO(2) is a cyclic group of order p—1. Hence, there exists an element
A in R‘ such that R =<A)>+SO(2), where {A) denotes the cyclic group generated
by A. Here we note that Ar—'eS50(2) and A™=S0O(2) for any positive integer
m<p—1. Therefore, we know that Ar~'=l,, where 1, is a unit matrix, and
R =(A>»SO(2). Since (Ay=F, =50(2), we obtain R =F, «F, .

Thus we have completed the proof.

LEMMA 3. (1) If p -3 (mod 4), we have

t2—1 2t

SR (IS REA T

Tl o2+1
(2) If p==1 (mod 4), we have

2+1 2—1
2t 2ti .

2—1 2 +1\’ teF," ),
2t 2t

where i is a root of the equation x?2+1=0 in the algebraic closed field of F,.

SO(2) =

The proof is easy and will be omitted.
Now, if A=M(2, Z), we shall denote by A* the matrix defined by
A*=A (mod p),
which belongs to M(2, F,), since we identify F, with Z/pZ.

THEOREM 2. Let A be a 2x<2 integral matriz, and suppose A* lies in SO(2).
Then the following assertions hold.

(1) If p=3 (mod 4), then A is a quadratic residue modulo p.

(2) If p=1(mod 4), then A is a quadratic residue modulo p if and only if
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x(t)=1, where t is an element in F," which corresponds to A* in the sense of Lemma 3.

Proor. (1) From Lemma 3, we obtain

e ar-2=x( .7 )

=x(—Dx(2+1)
:—X(t2+l)»
where ¢ is an element in F,. If £2:0, namely, A*>—1,, we get

e )
=x(t2+1).

Thus our assertion follows immediately from Theorem 1 unless A*= —1,. But,

when A*= —1,, our assertion also holds.

(2) The proof is similar to the one of (1), and we omit it.
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