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Synopsis: We determine all absolute Galois fields included in pure extension

number fields.

A field F is said to be a pure extension number field, if F is obtained by adjoin-
ing a root of an irreducible polynomial X"—A (A<Z) to the rational number field

Q. A field F is said to be an absolute Galois field, if the extension F/Q is Galois.

LEMMA 1. Let p be any odd prime. A polynomial X'—A (q=p°) is reducible on
a field F if and only if A is an pth power of an element in F.

LEMMA 2. Suppose that positive integers m and n are relatively prime. A poly-

nomial Xm™"— A is irreducible on a field F if and only if both X"— A and X"—A are
irreducible on F.

See (1) or (2) about proofs of Lemmas 1 and 2.

LEMMA 3. Let A be a rational integer and p be an odd prime. If X?—A (¢q=
p) is irreducible on Q, then it is also irreducible on every abelian extension field of Q.

PROOF. We shall prove the contraposition of the proposition. Suppose that
X?— A is reducible on a certain abelian extension field F. From Lemma 1, there
exists an element y in F such that A=y?. Thus Q(¥ A)=Q(v) is an abelian ex-
tension field of Q. If Q(# A) does not equal to Q, then the index (Q(¥ZA) : Q)
is p. Let ¢ be a pth primitive root of unity. Since ¢ A is conjugate to A,
the field Q(# A ) contains {. Therefore Q(# A ) includes the cyclotomic field Q(¢),

and so (Q(¥A) : Q) is divisible by (Q(¢) : Q) which is even. This contradiction
implies Q(# A)=Q, so that there exists a rational integer B with A=B». Namely

by Lemma 1, the polynomial X“— A is reducible on Q.
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LEMMA 4. If X*—A is irreducible on a field F, then X" — A is irreducible on I
for every divisor m of n.

ProOOF. Clear.

From now on, let /A be the root of an irreducible polynomial X*—A (A€ Z)
satisfied
, 0 if A>0,
arg VA=
w/2¢ if A<,
where n is divisible by 2, not by 25+1,

PROPOSITION 1. If n is odd, then Q({/A) does not have a non-trivial absolute
Galois subfield.
PROOF. Obviously the Galois closure of the extension Q( #A)/Q is Q(¥A, ©),
where ¢ is an nth primitive root of unity. It follows from Lemma 2 and 3 that
QYA ©) Q) =(Q(FA) : Q)AL : Q)
and
Q(vANQ)=AQ.
The extension Q( A, ¢)/Q(¢) is cyclic and every its intermediate field is given by
Q(/A, ¢), where m is a divisor of n. Thus every intermediate field of Q( JA)/Q
is given by Q({A), where m is a divisor of »n. Suppose now that Q({/A) is an
absolute Galois field. By Lemma 4, it is an extension field of Q of degree m.
Therefore Q( </ A) has an mth primitive root of unity. If m is more than 1, then

similarly to Proof of Lemma 3, we obtain a contradiction. Hence we have m=1.

PROPOSITION 2. If n is even and A is positive, then the maximal absolute Galois
subfield of Q(VA) is Q(VA).

PrOOF. From the way of taking the argument of /A, the field Q(A) is
real. Let F be the maximal absolute Galois subfield of Q(</A). Similarly to Proof
of Proposition 1, the field Q(«/A) must have an mth primitive root of unity, where
m equals (F: Q). Hence we get (F: Q)=2, so that it holds F=Q(\/A).

We complete the note by considering the case that » is even and A is negative.
Then we can put A=—B® (a=2%) or A=—B!C"? (b=2", 0<<m<s), where B, C are

positive integers and further C is a square free except for 1.

PROPOSITION 3. If n is even and A is negative, then the maximal absolute Galois
subfield M of Q(/A) is given by the following ;
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QR/A)=Q(L2.) if A=—B" (a=2%),

Q2 /A)=Q(u/B+ ¥2) if A=—B2" (b=2" 3=m<s),
Q( YA) = Q¢ YB +¥3) if A=—B23 and 3|n,

QR/A) = Qv C) otherwise.

where £, is an ith primitive root of nuity.

M=

PROOF. Put n=2'¢, and so ¢ is odd. Using Lemmas 1 and 2 as often as we wish,
we obtain
(Q/A, ¢2) @ QCan)) =t

Further from Lemma 2, we have (a=2*)

QY A, C20) 1 Q(C2)) =(QAR/A, £20) 1 Q2)] + 2.
Thus Q(VA)NQ(Lz) = QR/A)NQ(L2.) (a=2), which is denoted by K. In case
of A=—B" (a=2), it obviously follows K == Q({/A) = Q(2.) = M (a=2%).
Hereafter suppose that A= —B!C"? (b=2", 0<<m=s). The order of A mod (Q(§z.))"
(a=2") in the multipule group Q(&2.)*/(Q(L2.)*)* (a=2*) is 27 if C divides n/2,
2:=m+1 if C does not divide n/2. For \/Cisin Q(¢z,)* if and only if C divides n/2,
since 2n is a multiple of 4. By the theory of Kummer extensions, its order equals
(QK/A, £20) : Q(L2a)) (a=2%), so that
(K Q)= { 2m if C divides n/2,
2n=1 if C does not divides n/2.
Since K contains Q(¢,) (b=2"), we obtain
K { Q(&2n/C) (b=2m) if C divides n/2,
Q&Y (b=2m) if C does not divides »n/2.
Now the maximal cyclotomic field F included in K is given by the following;
Q(f20) if A=—B* (a=2")
Q(¢2,) if A=—DB"2"2 (b=2", s=m=3)
Q) if A=—B23
Q(¢») otherwise.
The extension Q( A, £2.)/Q(&z2,) is cyclic and its intermediate field is given by
Q({/A, £22), where 4 is divisor of n. Therefore any intermediate field of K({/A)/K
is given by K({/A), where 4 is a divisor of ». Since M is maximal, it holds
K(YA)DM>DK, so that M=K({/A) for some divisor 4 of n. In order that
K({/A)/Q is Galois, it is necessary and sufficient that K({/A) contains a dth
primitve root {, of unity. Since Q({2.) contains &,, we see {,=K({/A) implies

tw=K and further we have {,&F. Hence K({/A)/F is a Kummer extension, S0
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we can easily complete to prove the proposition.
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