On a Certain Combination Theorem

Shigeyasu Kamiya

(Received September, 16, 1978)

1. Introduction and statement of result

In the study of kleinian groups it is important to construct new kleinian groups.

In this paper we shall show a simple combination theorem. Before stating our theorem, we explain some notation and definitions.

We denote the extended complex plane, or Riemann sphere, by $\hat{\mathbf{C}}$. If G is a group of Möbius transformations, and $z \in \hat{\mathbf{C}}$, then z is called a regular point for G $(z \in R(G))$ if there is a neighborhood U of z so that $g(U) \cap U = \emptyset$, for all $g \in G$, $g \neq 1$. If $R(G) \neq \emptyset$, then G is called a kleinian group. A set D is called fundamental set (FS) for G, if

- (a) $g(D) \cap D = \emptyset$, for all $g \in G$, $g \neq 1$,
- (b) there exist an element g in G and a point w in D such that g(w) = z for any z in R(G).

Our result is the following theorem.

THEOREM. Let G be a kleinian group. Let $f \notin G$ be an elliptic element with the period 2. Let D_1 , D_2 be FS's for G, $\langle f \rangle$, respectively. Let r_1 , r_2 , r_3 be simple closed curves.

Assume that

- (1) $r_2 \cap r_3$ is either empty or one point;
- (2) $r_1 \cap r_i$ (i=2, 3) is only two points;
- (3) $Ext \ r_1 \subseteq D_2 \subseteq (Int \ r_1)^r$;
- (4) there exists g in G such that $g(r_2) = r_3$;
- (5) $f(r_2) = r_3$;
- (6) $(Int \ r_1) \setminus [(Int \ r_1) \cap (Int \ r_2)] \setminus [(Int \ r_1) \cap (Int \ r_3)] \subseteq D_1 \subseteq (Ext \ r_2) \cap (Ext \ r_3);$
 - (7) $D_1 \cap D_2 \neq \emptyset$;

Then

(I) Γ , the group generated by G and f, is kleinian;

(II) $D=D_1 \cap D_2$ is FS for Γ .

2. Proof of theorem

First we shall show that two points in $D=D_1\cap D_2$ are not equivalent under Γ . Let z be a point in D. We divide into five cases.

- i) Since $z \in D_1$, $g(z) \in D_1^c$ for any $g \in G \setminus \{1\}$. Hence $g(D) \cap D = \emptyset$ for any $g \in G \setminus \{1\}$.
 - ii) As $z \in D_2$, $f(z) \in D_2^c$. Therefore $f(D) \cap D = \emptyset$.
- iii) We consider an element which is of the form hf, where $h \in G$. Since $f(z) \in D_2^c$, $f(z) \in Int \ r_1$. If $f(z) \in (Int \ r_1) \cap (Int \ r_2)$, then $z \in (Int \ r_3) \cap (Ext \ r_1)$. Hence $z \notin D_1 \cap D_2$. This contradicts our assumption that z is a point in D. Therefore $f(z) \notin (Int \ r_1) \cap (Int \ r_2)$. If $f(z) \in (Int \ r_1) \cap (Ext \ r_2) \cap (Ext \ r_3)$, then $hf(z) \in D_1^c$. Hence $hf(D) \cap D = \emptyset$. If $f(z) \in D$, then $z \in (Int \ r_2) \cap (Ext \ r_1)$. Hence $z \notin D_1 \cap D_2$. This is a contrdiction. We conclude that $hf(D) \cap D = \emptyset$.
- iv) In this case, we show that $fh(D) \cap D = \emptyset$ for every h in G. If $h(z) \in (Int r_2) \cup (Int r_3)$, then $fh(z) \in (Int r_2) \cup (Int r_3)$. Hence $fh(z) \in (D_1 \cap D_2)^c$. Therefore $fh(D) \cap D = \emptyset$. If $h(z) \in [(Int r_2) \cup (Int r_3)]^c$, then $fh(z) \in D_2^c$. Hence $fh(D) \cap D = \emptyset$.
 - v) In general case, iii) and iv) leads to our conclusion.

Next we shall prove that any point in $R(\Gamma)$ is Γ -equivalent to some point in D. It is clear that $R(G) \supset R(\Gamma)$. It remains to show that a point in $(Int \ r_1) \cap (Ext \ r_2) \cap (Ext \ r_3)$ is Γ -equivalent to some point in D. Let z be in $(Int \ r_1) \cap (Ext \ r_2) \cap (Ext \ r_3)$. When $f(z) \in D$, we have nothing to prove. If $f(z) \notin D$, then $f(z) \in D_2 \cap (Ext \ r_3)$. There exist an element h in G and a point x in D_1 such that h(x) = f(z). It is easy to show that $gf(z) \in (Int \ r_3)$. Since $(Int \ r_3)$ is not contained in D_1 , there are an element k and a point y in D_1 such that k(y) = gf(z). It follows that gf(z) = gh(x) = k(y). Now we note that $x \neq y$. Therefore x and y are G-equivalent in D_1 . This is a contradiction. Thus f(z) is contained in D.

3. Application

Using our theorem, we can construct a fuchsian group of the first kind from a fuchsian group of the second kind.

Let G be a fuchsian group of the second kind with one funnel. Let g be a hyperbolic element in G corresponding to the funnel. Let $f \notin G$ be an elliptic element

with the period 2 whose isometric circle is an axis of g. We denote a Ford polygon for G (resp. $\langle f \rangle$) by R_1 (resp. R_2). Then Γ , the group by G and f, is a fuchsian group of the first kind and $R_1 \cap R_2$ is a Ford polygon for Γ .

reference

[1] L. R. Ford, Automorphic functions, 2nd ed., Chelsea, 1951.

Department of Mechanical Science, Faculty of Science, Okayama University of Science