On a Certain Combination Theorem ### Shigeyasu Kamiya (Received September, 16, 1978) ### 1. Introduction and statement of result In the study of kleinian groups it is important to construct new kleinian groups. In this paper we shall show a simple combination theorem. Before stating our theorem, we explain some notation and definitions. We denote the extended complex plane, or Riemann sphere, by $\hat{\mathbf{C}}$. If G is a group of Möbius transformations, and $z \in \hat{\mathbf{C}}$, then z is called a regular point for G $(z \in R(G))$ if there is a neighborhood U of z so that $g(U) \cap U = \emptyset$, for all $g \in G$, $g \neq 1$. If $R(G) \neq \emptyset$, then G is called a kleinian group. A set D is called fundamental set (FS) for G, if - (a) $g(D) \cap D = \emptyset$, for all $g \in G$, $g \neq 1$, - (b) there exist an element g in G and a point w in D such that g(w) = z for any z in R(G). Our result is the following theorem. THEOREM. Let G be a kleinian group. Let $f \notin G$ be an elliptic element with the period 2. Let D_1 , D_2 be FS's for G, $\langle f \rangle$, respectively. Let r_1 , r_2 , r_3 be simple closed curves. Assume that - (1) $r_2 \cap r_3$ is either empty or one point; - (2) $r_1 \cap r_i$ (i=2, 3) is only two points; - (3) $Ext \ r_1 \subseteq D_2 \subseteq (Int \ r_1)^r$; - (4) there exists g in G such that $g(r_2) = r_3$; - (5) $f(r_2) = r_3$; - (6) $(Int \ r_1) \setminus [(Int \ r_1) \cap (Int \ r_2)] \setminus [(Int \ r_1) \cap (Int \ r_3)] \subseteq D_1 \subseteq (Ext \ r_2) \cap (Ext \ r_3);$ - (7) $D_1 \cap D_2 \neq \emptyset$; Then (I) Γ , the group generated by G and f, is kleinian; (II) $D=D_1 \cap D_2$ is FS for Γ . #### 2. Proof of theorem First we shall show that two points in $D=D_1\cap D_2$ are not equivalent under Γ . Let z be a point in D. We divide into five cases. - i) Since $z \in D_1$, $g(z) \in D_1^c$ for any $g \in G \setminus \{1\}$. Hence $g(D) \cap D = \emptyset$ for any $g \in G \setminus \{1\}$. - ii) As $z \in D_2$, $f(z) \in D_2^c$. Therefore $f(D) \cap D = \emptyset$. - iii) We consider an element which is of the form hf, where $h \in G$. Since $f(z) \in D_2^c$, $f(z) \in Int \ r_1$. If $f(z) \in (Int \ r_1) \cap (Int \ r_2)$, then $z \in (Int \ r_3) \cap (Ext \ r_1)$. Hence $z \notin D_1 \cap D_2$. This contradicts our assumption that z is a point in D. Therefore $f(z) \notin (Int \ r_1) \cap (Int \ r_2)$. If $f(z) \in (Int \ r_1) \cap (Ext \ r_2) \cap (Ext \ r_3)$, then $hf(z) \in D_1^c$. Hence $hf(D) \cap D = \emptyset$. If $f(z) \in D$, then $z \in (Int \ r_2) \cap (Ext \ r_1)$. Hence $z \notin D_1 \cap D_2$. This is a contrdiction. We conclude that $hf(D) \cap D = \emptyset$. - iv) In this case, we show that $fh(D) \cap D = \emptyset$ for every h in G. If $h(z) \in (Int r_2) \cup (Int r_3)$, then $fh(z) \in (Int r_2) \cup (Int r_3)$. Hence $fh(z) \in (D_1 \cap D_2)^c$. Therefore $fh(D) \cap D = \emptyset$. If $h(z) \in [(Int r_2) \cup (Int r_3)]^c$, then $fh(z) \in D_2^c$. Hence $fh(D) \cap D = \emptyset$. - v) In general case, iii) and iv) leads to our conclusion. Next we shall prove that any point in $R(\Gamma)$ is Γ -equivalent to some point in D. It is clear that $R(G) \supset R(\Gamma)$. It remains to show that a point in $(Int \ r_1) \cap (Ext \ r_2) \cap (Ext \ r_3)$ is Γ -equivalent to some point in D. Let z be in $(Int \ r_1) \cap (Ext \ r_2) \cap (Ext \ r_3)$. When $f(z) \in D$, we have nothing to prove. If $f(z) \notin D$, then $f(z) \in D_2 \cap (Ext \ r_3)$. There exist an element h in G and a point x in D_1 such that h(x) = f(z). It is easy to show that $gf(z) \in (Int \ r_3)$. Since $(Int \ r_3)$ is not contained in D_1 , there are an element k and a point y in D_1 such that k(y) = gf(z). It follows that gf(z) = gh(x) = k(y). Now we note that $x \neq y$. Therefore x and y are G-equivalent in D_1 . This is a contradiction. Thus f(z) is contained in D. ## 3. Application Using our theorem, we can construct a fuchsian group of the first kind from a fuchsian group of the second kind. Let G be a fuchsian group of the second kind with one funnel. Let g be a hyperbolic element in G corresponding to the funnel. Let $f \notin G$ be an elliptic element with the period 2 whose isometric circle is an axis of g. We denote a Ford polygon for G (resp. $\langle f \rangle$) by R_1 (resp. R_2). Then Γ , the group by G and f, is a fuchsian group of the first kind and $R_1 \cap R_2$ is a Ford polygon for Γ . #### reference [1] L. R. Ford, Automorphic functions, 2nd ed., Chelsea, 1951. Department of Mechanical Science, Faculty of Science, Okayama University of Science