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ABSTRACT——In a nonuniform pseudo-distortionless transmission line of finite
length, the locus on the s-plane of the poles and zeros of the driving-point immittance
function depends on the primary line constants, and the critical frequencies on the
pole-zero distribution depend on the shape of the distributed series inductance and
shunt capacitance. This paper elucidates the general properties of the pole-zero dis-
tribution of the driving-point immittance function for a nonuniform pseudo-distortion-
less transmission line of finite length, and then shows the pole-zero distribution for

the generalized exponential line section.

1. INTRODUCTION

We consider a two-port section composed of only a nonuniform pseudo-distortion-
less transmission line of finite length. The pole-zero distribution of the driving-point
immittance function of the section can be obtained by the aid of classical Sturm-
Liouville theory. The locus of the poles and zeros on the s-plane depends on the
primary line constants, and the distribution of the critical frequencies is established
by the corresponding eigenvalue. The deflection of the eigenvalues depends on the
shape of the distributed series inductance and shunt capacitance.

Except for the case of homogeneous media, generally the propagation constant of
a transmission line is nonuniform along the line. Thus, in order to simplify the
model in question, we adopt the coordinate system with electrically modified length

instead of one with physical length as a spatial coordinate system along the line.

2. GENERAL PROPERTIES
We assume a nonuniform pseudo-distortionless transmission line of length /, of
which the distributed series inductance and shunt capacitance per unit length at the

position x are L(x) and C(x), respectively, and are at least twice continuously
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differentiable with respect to . On physical grounds both L(z) and C(x) are finite

and positive, thus the function,

2(z) = f " VLECTEEE f :\/L"('&)c@jdg, (1)

is a monotonously increasing function of x in a narrow sense. Namely, the function
in (1) is a single-valued function of x, and x has one to one correspondence to %, and

especially
x(0)=0 and () =1
Defining the electrically modified length along the transmission line in terms of (1),

the distributed series inductance and shunt capacitance per unit length of % are given
by

L(Z)=+/L(z)/C(@) f fyL<x>C<x>dx
(2)

and C(8) =/ C@)/ L) [ VL@ @z,
respectively.
A pair of line equations in transform notation for the nonuniform pseudo-dis-
tortionless transmission line can be written in terms of
Vi (%, s)=—(s+r)L(2)I(Z, s)
I/ (%, s) =—(s+g)C(®) V(Z, s)

where s is the complex frequency variable (s=o¢+ jw), both of » and g are finite

(3)

and nonnegative constants characterizing the pseudo-distortionless line, and V(Z, s)
and 1(Z, s) are, respectively, the voltage and current (at the position %) transformed
with respect to time. In (3) and throughout this paper, the subscript £ accompanied
with prime is used to indicate the partial differentiation with respect to %, for

example, \75' and VH" denote dV/dx and d?V/d#?, respectively.

Combining the equations in (3), the result is

(VCE) V(E, )"+ {A()~4°(D)} v C(Z) V(&, ) =0 (42)
or (VL I(Z, )} "+ 14() = 42(8)} v/ L(E) [(%, 5)=0 (4b)
where A==+ (+8) ([, VIECE)dx)? (5)

4(D) = (VC(@D}_" /v C(E) (62)

(D)= (VL@ " IVIE (6b)

The two-port parameters can be described by either the port voltages or the port
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currents. For instance, the short-circuit driving-point admittance function y,;(s) can

be expressed in terms of the port voltages,
Yu) ==V/(0, )/ G+ LO VO )l gy g (7)

The pole-zero distribution of y,;(s) can be established from the Sturm-Liouville equa-

tion (4a) with the boundary conditions,

V(0, s)=V(1,s)=0 (for poles) (8)
and V;’(O, s) =V(1,s)=0 (for zeros) (9)
In both of the Sturm-Liouville problem, (4a), (8), and the problem, (4b), (9), the
eigenvalues are positive real numbers except the trivial case of 4=0, and are simple,
isolated and infinite in number having no accumulation point along the positive real
axis of the complex A-plane (2-3). Let A7, and V7,(X) be, respectively, the nth
nontrivial eigenvalue and the corresponding eigenfunction of the problem, (4a), (8).
Similarly, let 47, and V:,(%) be, respectively, the nth eigenvalue and the correspond-
ing eigenfunction of the problem, (4a), (9). The eigenvalues are separated as
Ay << Ay << Aoy (10)
for any positive integer n. The eigenvalues, 47, and A4%,, approach to, respectively,
(nm)? and {(n—1%)m}? with sufficiently increasing n (3). These properties also are
true for any driving-point immittance.
By the aid of the Weierstrass factor theorem, the short-circuit driving-point

admittance function y,;(s) can be written as the infinite products,
yu(s)= KI {A(s)— A7} / (s+7) 11 {A(s) — 47,) (11)
n=1 n=1

where K is a constant. The critical frequency s, corresponding to nth eigenvalue

A, can be determined from (5).

Let 4= {ho—g) [, VL@ C@dz)* (12)
Three cases are considered in the relation between 4, and 4°, First, when an eigen-
value 4, is equal to 4¢, A, has one to one correspondence to the critical frequency,

sn = —Yo(r+g) 13
Here, the critical frequency is located on the negative real axis on the s-plane.
Secondly, when an eigenvalue 4, is less than A4¢, 4, has one to one correspondence

to a pair of critical frequencies,

. - 1 [
=G+ =V~ 4,/ [ VL@ C@dr (14)
Here, the critical frequencies are located symmetrically along the negative real axis

on both sides of s=—14 (r+g).
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Thirdly, when an eigenvalue 4, is more than A¢, .4, has one to one correspond-

ence to a pair of critical frequencies,
L { S
Sp = —Yo(r+g) i dp—A¢/ fo VvV L(x)C(x)dx (15)
Here, the critical frequencies are complex conjugates with the constant real part

—(r+g).
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Fig. 1 Some typical pole-zero pistributions of the short-circuit driving-point admittance
functions of pseudo-distortionless transmission lines of finite length. The symbols,

x and O, denote pole and zero, respectively.

The pole-zero distribution of y,,(s) of a distortionless transmission line, for which
r=g, is illustrated in Fig. 1a for a lossless case, and in Fig. 1b for a lossy case. In
either case, the single pole is located at s=—r, while the conjugate poles and zeros
(infinite in number) are distributed along the line of Re s=—r (=—g).

In a more general case of rs+g, a single pole also is located at s=—r. Some pairs
of poles and some pairs of zeros are distributed symmetrically along the negative
real axis on both sides of s=—14 (r+g), while the remaining conjugate poles and
zeros (infinite in number) are along the line of Re s=—14 (r+g). Here it is interest-

ing that the frequency, s=—g, is neither a pole nor a zero (4). When
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r—gl<2v't/ [ VL@@,
all the poles and zeros except the pole, s=—r, are distributed on the line of Re s==
=Y (r+g). If
r—gl=2v %/ [ VL@ @z,
then s=—15 (r+g) is the location of a pair of overlapped nth poles, Similarly, if
r—gl=2v I/ [ VL@ C@az,

then s=—14 (r+g) is the location of a pair of overlapped sth zeros. Some typical

pole-zero distributions in the case of r-4g are shown in Fig. lc-f.

3. GENERALIZED EXPONENTIAL LINE SECTIONS

A transmission line in which either 4 (%) or 4% (%) is independent of % is called
a generalized exponential line (1). When
4¢(%) =4¢ = constant (16)
and both of C(0) and C(1) are given, the distributed shunt capacitance function can

be written as

C(%) = csch?y/4¢ {\/C(1) sinhy/4¢ Z+/C(0) sinh\/4¢ (1—X)}? (17)
where 4¢ is available at values more than — 72, or
JO~ 2 (18)

Similarly, in the case of
4L(%)=J4" = constant (19

and both of L(0) and L(1) are given, the distributed series inductance function is

L(%) = csch?\/4L {\/L(1) sinhy/4" -+ /L(0) sinhy/4 (1—7)2 (20)

where 4/ also is available at values over — 2, or

4L > — 72 (21)

Defining the impedance level Z,(%) at position ¥ in the generalized exponential

line to be

Zo(2) = /L(D) /C(D), (22)
it is clear from (2) that

Zo(1)/Zo(0) = C(0)/C(1) = L(1)/L(0) (23)
For notational convenience, let @ denote the impedance ratio at the line ends, or

o = 7(1)/Z(0) (24)

In the generalized exponential lines, the line of

10 = 1t = (Inya )2
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is an exponential line, and the line of

4 =0 or 4dt=9
is a quadratic line, and especially the exponential line or the quadratic line of

@=1
is a uniform line. In addition to these three lines, all of lines termed a squared-
hyperbolic-cosine line, a squared-hyperbolic-sine line, and a squared-cosine line also
come within the category of the generalized exponential lines. Namely, all of these
six lines are the special cases of the generalized exponential lines.

As an example for examining the pole-zero distribution of the driving-point im-
mittance function of a transimission line of finite lenth, we deal with the transmission
line of which the distributed shunt capacitance function is given by (17). The short-
circuit driving-point admittance function y:;(s) of the two-port can be expressed
by [1]

yu(s) = (V49— A(s) cothy/4°= A(s) + {Iny/C(0)}+) / (s+r)L(0)  (25)

A. The Poles of yi:(s)
It is obvious from (25) that any eigen value of the Sturm-Liouville probiem, (4a),
(8), is more than 4¢. The eigenvalues and the corresponding eigenfunctions are,
respectively,
Ar, = 494 (nTr)? (26)
and V2 (%) = sin{am(1— %)} //C(E) 27

where n denotes any positive integer.

B. The Zeros of y;:(s)
Under the separation condition of (10), two cases on eigenvalues are considered :
One is the case of
4° < A%,
and the other is the case of
0 <T A7 << 40 < A%,
When any eigenvalue is more than 4¢, the eigenvalue and the corresponding
eigenfunction are, respectively,
Az = 404-T,2 (28)
and V2u(®) =sin{l,,(1— )} /v/C(X) (29)
where n is any positive integer, and I', denotes the nth root of the transcendental
equation of I,

r+ {ln\/—(_,T(Y)S}E' tanI' =
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When only the minimum eigenvalue is less than 4¢ or equal to 4¢, the eigenvalues

and the corresponding eigenfunctions are, respectively,

Aoy = 40Ty
(30)

Ay = 404 T2
and V4(8) = sinh (I (1—2)) /v/C(E) (31)

Ve (%) = sin{l»(1-2)} /v/C(X)
where n is any positive integer except 1, and I'; denotes the root of the transcendental

equation of I,

I+ {lm/?@};’ tanhI" = 0
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Fig. 2 The shapes of the distributed shunt capacitance function C(z) corresponding
to various values for 4¢, and the eigenvalues, 47, and A%,, as functions of J-.
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and I', denotes the n-1th root of the equation of I',

I+ {ln\/é(o)};' tanI” = 0

In the three cases of @=¢"2, 1, and ¢?, the shapes of the distributed shunt capaci-
tance function C(z) corresponding to various values for 4¢, and the eigenvalues, 47,
and 4%, as functions of 4¢ are illustrated in Fig. 2.

As is obvious from Fig. 2, 4, is influenced considerably by both of 4¢ and «,
while 47, is dependent on 4¢ but independent of «. The effect of 4¢ on each of 47,
and 47, decreases with increasing », and the effect of @ on 47, also decreases as n
increases. Every 47, is a monotonously increasing function of 4¢, while any 47, has
an extremal value. %, has a local maximum, and any A7, except 4% has a local
minimum. Any 4%, takes the extremal value, if and only if

(Zo(0)} ) = 0 (32)

The condition in (32) is established when

0 for ¢ =1 (33)

— (cos~'\/a~1)? for a>1
40 =
{ (cosh~!'\/a~1)2 for @ <<1
Any A7, shifts to smaller value with increasing «. When « is extremely large,
A%, takes a value nearly 47,_;. On the contrary, if « is extremely small, then 4%,

takes a value nearly 4¢,. In either case, the separation condition in (10) is valid.

4. CONCLUSIONS

To simplify the model in question, this paper has used the electrically modified
length instead of the physical length. Finding the pole-zero distribution of the
driving-point immittance function for a transmission line of finite length results in
solving the reduced Sturm-Liouville problems.

Except for a sigle pole at s=—r, the distribution of the critical frequencies of a
driving-point admittance function is classiffied roughly into three cases, that is, some
symmetrical pairs of poles and zeros along the negative real axis on both sides of s=
—14 (r+g), conjugate poles and zeros (infinite in number) along the line of Re s==
—1 (r+g), and a double pole or a double zero at s=—1% (r+g). By examining
whether the nth eigenvalue A7, (or 4%,) is more than a critical value A4¢ or less
than A€, it is possible to establish the case to which the practical distribution of a pair
of the nth poles (or zeros) belongs.

In a generalized exponential line section, the constant 4¢ influences both of the
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eigenvalues, 47, and A4:,. Every A7, shifts monotonously to large value with
increasing 4, while any 4%, has an extremal value. On the other hand, the impedance
ratio « has an effect on only A:,. Every A4¢, shifts to small value as « increases.

To sum up, the locus of the poles and zeros on the s-plane depends on both of r
and g, and the critical frequencies on pole-zero distribution depend on the shape of

the distributed series inductance and shunt capacitance.
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