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Abstract

In order to take into account the effect of the scattering angular distribution in the center
of mass system in calculating the angular neutron flux in fast reactor assembly we develop the
synthetic kernel approximation. In this paper the generalized Greuling Goertzel kernel (G’’) and
the generalized Wigner kernel (WY™) are proposed in order to estimate such effects. These
generalized synthetic kernels enable us to allow rapid computations of collision integrals and

are useful for calculations of the angular neutron fluxes in the vicinity of scattering resonances.

I. INTRODUCTION

The problems of determining fast neutron spectra in the fast reactor assembly have been
studied for these three years and various approximations are in use to account for the scatter-
ing resonances and inelastic scattering. By expanding the total collision density, STACEYD
applied continuous slowing down (CSD) theory to the treatment of the elastic moderation of
fast neutrons in fast reactor assembly, where strong scattering resonances are prevalent.
According to the approximate method proposed successfully by CADILHAC and PUJOL?,
DUNN and BECKER® calculated the fast neutron spectra by making use of a separable kernel
for elastic scattering and inelastic scattering and VOLMERANGE? proposed a general model
for the elastic and inelastic slowing down of fast neutrons.

There exists another approach to such problems, which is based on the synthetic kernel
approximation (SKA). This approach is mainly developed by YAMAMURA and SEKIYAY.

Almost all analyses mentioned above are performed under the assumption that the elastic
angular distribution is isotropic in the center of mass (CM) system. Recntly the effect of the
CM angular distribution on fast neutron moderation has been investigated by STACEY® accord-
ing to his CSD theory. His approach is based on AMSTER? and GREUL'NG and GOERTZEL
8’s formalism who extended the original Greuling-Goertzel (GG) formalism® to accomodate
anisotropic scattering and to determine the sensitivity of the approximation to various-order
Legendre components of the angular scatterring data.

YAMAMURA and SEKIYA!® have pointed out that it is difficult to take into account
the effect of the CM scattering angular distribution upon the higher-order Legendre compon-
ents of the angular neutron flux according to the GG approximation.

In order to avoid such difficulties, in this paper, we will propose the generalized synthetic

kernels G'* and W." for the CM angular distribution and the anisotropic scattering in the

* Department of Applied Physics, Okayama College of Science,

*¥  Department of Nuclear Engineering, Osaka University Suita-shi, Osaka



128 Y. YAMAMURA and K, YAMAMOTO

laboratory(L) system. Namely, the synthetic kernels G¥* ane W.* will be defined for each
coupling of the l'th-order Legendre component of the anisotropic scattering (L) and the m'th-

order Legendre component of the CM angular distribution.

II. LETHARGY MOMENTS OF THE CM-TO-L TRANSFER FUNCTION

When calculating the angular spectrum in fast reactor assembly the anisotropy in the CM
system must be taken into account. Tn attempting to study such problems most difficulties
lie in the treatment of the collision integral. The I’th-order Legendre component of the elastic

collision integral is defined as follows :
i (u) = ZS_ du'h (u') fur (w'—>u) @, (u') (1)

where hi(u) is the relative probability of elastic scattering for isotope %, @i(u) is the U'th-
order Legendre component of the angular collision density and fu(u'—>u) is the I’ th-order
Legendre component of the scattering transition probability of isotope ¢ in the L system

—(u—-u’)
fu (u'—u) =—§—__a— Py (eer (w, u'))
1

Xmi.::o Cm~+1) foi (W) P (2. (u, w"))  u—e,<u'u, (2)

with a;=M;—1)%/(M¢+1)?% ei=—In ay and M being the atomic mass of isotope ¢.

The coefficients fmi(u) are the m'th-order Legendre component of the scattering angular
distribution in the CM system, while #7(u, ') and z.(u, w’) are cosines of the scattering angle
in the L and CM systems, respectively.

For simplicity we will omit the subscript ¢ for isotope in the ensuing discussions.

When one attempts to calculate the angular neutron flux, it is a very important problem how
to approximate the collision integral. The previous approximate slowing down theories™-!D
were obtained by assuming h(w) ¢: () in the integrand of Eq. (1) to be slowly varying.
In this paper we will assume h(u") ¢i(w") fm(u’) to be a slowly varying function over the

scattering interval

W) fn ) =3 oD @) e @], (3)

= a
where D e

The direct insertion of Eq. (8) into Eq. (1) yields
7 =52 1 D [h@fa(w) 9] (4)
where TY, is the well.known lethargy moment of the CM-to-L transfer function and it is

defined as follows :

7, =GB [ Py ) PaCeae . (5)
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In estimating the effects of the CM angular distribution upon the Il’th-order Legendre com-
ponent of the angular collision density, it is neccessary to know the appoximate values of
Tk, because the values of the T}, have the one-to-one correspondence to such effects. By
rough estimation we get the following mass-dependence of the quantities T}, for a heavy-mass

element :

efm(;l;f)k [l—m| <k
T = 6
l k€ L1 ji—m| . ( )
€lm (M ) otherwise,

where the coefficient e¢;5 are smaller than unity, while ¢ is nearly equal to unity!D.

Equation (5) tells us that, even if within the GG approximation, the I’th-order Legendre
component of the anisotropic scattering (I.) may be influenced by the same order Legendre
component of the CM angular distribution, if we does not account for the relative order of

magnitude of the fm(u).
II. APPROXIMATE APPROACH TO DIFFERNTIAL POLYNOMIAL

Let us define the following differential polynomial which is appeared in Eq. (4) :
Jim(D) =2 TH, D~ (6)
k=0

As was already pointed out by YAMAMURA and SEKIYA!?, the approximate procedure to
obtain the generalized synthetic kernel for elastic scattering is equivalent to replacing this
differential polynomial by the appropriate integral operator.

According to this theory, YAMAMURA and SEKIYA!® have proposed the G, kernel (the
generalized GG kernel) for neutron slowing down in the case of the isotropic scattering in
the CM system. Mathematically detailed examinations of YAMAMURA and SEKIYA’s approach
have revealed that there exists another type of the generalizd synthetic kernel, which will
be considered as the generalization of the Wigner kernel.

In this paper we will extend such formalism for the isotropic scattering to accomodate
the CM scattering angular distribution and the anisotropic scattering in the L system.  The
differential polynomial Jim(D) implies the contribution of the CM angular distribution to the
Uth-order Legendre component of the anisotropic scattering in the L system. As was mentioned
in chapter I, the higher order Legendre component of the CM angular distribution cannot be
neglected in calculating the higher order Legendre component of the angular neutron flux.

Here we assume that the differential polynomial Ju.(I2) can be approximated by the

following infinite continued fraction :
TO
D — . L o o
J lm( ) a’im D
1 + im 1)
1+ ,az_D -
14 @D (7)

1-{_......
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. . k
a!™ are the parameters which are expressed in terms of Tj,.

where the quantities a
If we trancate the higher terms of this infinite continued fraction than a'™ ., then we
will obtain the following approximate expression for Jim(D) :
Jim (D) A:JTZ%‘—PE;%%" (8)
From the property of the continued fraction, we can easily know that these differential
polynomials @/™(D) and P!™(D) satisfy the following relation :

P™(D) = P/ (D) +a/* D - P",(D), (9)
Q" (D) =@, (D) +ai" D - @7, (D), (10)
where the polynomials with lower indexes have the form
(D) =1, " (D) =1,
Lm (D) :1 +a1m D, lm (D) :1
lm (D) =1 -+ (a m+aém)D lm (D) _<1+a , (11)
(D) =1-+ (aim +aém+a )D+alm alm D‘Z, 3 (D) =1- (aém_*_aém) D.

Namely P;™(D) and @,”*(D) are the polynomials of degrees ntl and | = | respectively.
n poly 2 2

m

Here we try to express explicitly the parameters a;* in terms of the lethargy moments

TE. For this purpose we will write down the polynomials P}™(D) and @Y"(D) in the form

[n;l
Pi"(D)= 3 pii D, (12)
[ %]
le (D) — Z qlm (13)

where pin=gln=1.
As is shown in Eq. (11), if n is even, the polynomials P!™(D) and Q*(ID) are the poly-
nomials of the same degree n/2, while P/™(D) and Q"(D) with odd n are the polynomials

of degree ﬁ—;—l and nr;i, respectively. Then let us discuss the problem of obtaining the
expression for a” by separating into two cases.

A) n=2J
In this case Eqs. (12) and (13) are rewritten by

2 (D) = E phra DY, (12a)

J

Q (D) =3 ¢, D (13a)

=0

Substituting Eqs. (12a), (13a) and (6) into Eq. (8), we get
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Sa— (14)

Operating P;7*(D) on both sides of Eq. (14) and comparing the coefficients of the same

power of D, we obtain the following simultaneous algebraic equations :

14
ﬂo p?}z}\ TL‘:VL_—)\ = Tlom ql27;,p. ,”‘:0, 1, J, (l5>
J
; Parn Thit=0 p=d+1, J4+2, - 2. (16)

The unknown coefficients pj7, are easily determined from the set of Eq. (16). Namely these

coefficients can be written by means of determinants

im — ]— l
Pora =~ D91 (0,0, +++0, 1, 0---0), (17)
DJ,1 20
A+1
where
J+EK—1 J+ K—2 K+1 i
‘ im ) Tlm b im Tlm J
m | J+K K+2 K+1
J K — TL Tlm ’ lm . <18)
i . . . |
i 2J+K—2 J+K 7+A 1|
| Tlm ) im ‘
|
a a3 ay-1 a,
b
J+K—1 J+K—2 K+l K [
; Tl y Tlm y 7" im Tlm
m —_—
DJ,K<aly RN PES JrE JHR-1 K+1 (19)
im ) tm ’ Im |
! . N i
S+ K—-3  aitk—t . naER—2 |
im 1) im ’ Im 1
and D%;TLKz 1.

The substitution of Eq. (17) into Eq. (15) yields the following expression for the coefficients

im
Qo p *

l 1 ! -1 ¢
q??.ﬂ- = Mjﬁ)ﬁ*]}},’h .;i],l (Tl‘:n) l‘:n y U Tlr;n, 00' * '0) . (20)
im J,1

As is known from Eq. (12), one can write down the explicit expression for the polynomial

P/7(D) by means of the determinant, namely

(D)= Difiny (1, D, D, D). (21)
J, 1

B) n=2J-1
In this case Equations (12) and (13) become

27 1<D) —Z pzl 1,A (12b)
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J=1
Qé:,ln-l (D) :E CZ;T'IL—LA D™ (13b)

The similar procedure to the case of n=2J yields the following simultaneous equation for the

unknown coefficients :

"
S TE = Th qfan we0,1,-7-1 (22)

M&

A PN T 2=0 p=J,J+1, -, 271, (23)

0

By solving this simultaneous equation we know that the coefficients pi7 ., and ¢i™ , , have

the explicit expressions of the form

1

pé?—l,)«:""‘_zﬁ““ D.II?I,O (Oy O’ "'0’ 1: O'O) ’ (24)
720 TR
QA= -~T1W* D710(Tims T3, +++ Tty 0, ++-0), (25)
Tlm' J,0

while the polynomial P/7 (D) is represented as
(D)= 5. Difo(1, D, D% D). (26)
J,0

Here we have got the explicit expression for coefficints of P:™(D) and Q™ (D). By substitut-
ing Bq. (12) with the coefficients defined in Egs. (17) and (24) into Eq. (9) and compar-

ing the coefficient of the same power of I in both sides of the rearranged equation, we can

easily obtain the expressins for a/™®, i.e,

im lm Im
Im __ D.]—l,l DJ.2 DJ,]
a27Jﬂ___ im Dlm - im } J =1, <27>
J—1,2 J.1 J,0
alm = Zo . Di I=1 (28)
( D™, D7 -

In terms of the parameter a" thus obtained the polynomials Pi"(D) and @™(D) can explici-
tly be expressed according to Egs. (9) and (10), which seems to be useful for the analytical
treatment of slowing down problem like calculation of the Placzek function.

It is mentioned before that the procedure of replacing the differential polynomial Jin (D)
by the integral operal operator such as Eq. (8) corresponds to approximating the exact scatter-
ing kernel Eq. (2) by the corresponding synthetic kernel. Namely if Jim(ID) are approximated
by Tp, - Q"(D)/Pim(D), the first n lethargy moments of thus obtained synthetic kernel are
consistent with those of the exact scattering kernel(I3. Therefore the degree n of these polynomials
implies the order of correctness of the synthetic kernel. Consequently speaking, the approxima-
tion by the polynomials P!™(D) and Q' (D) with even degree corresponds to the generalized

Greuling Goertzel kernel and that by the polynomials with odd degree to the generalized Wigner
kernel,
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IV. DERIVATION OF GENERALIZED SYNTHETIC KERNELS

The synthetic kernel approximation (SKA) method for neutron slowing down is originated
at the work of GREULING et al®. Great efforts have been employed in extending the original
theory to accomodate the effect of the various order Legendre components of the CM angular
distribution upon the anisotropic scattering in the L system(PUD,

As was mentioned in chapter I[, the previous approaches for the SKA are characterized
by the Taylor expansion of the integrand h(w')Yr(w') in Egq. (1) about «'=u, while the pre-
sent procedure starts with that of A(uw')f.(uw ) ¥ (w’) about ¥’ =wu. As a result, the slowing
down parameters Ar(w) (Ferziger and Zweifel’'s notationD’) defined by the former approaches
are functions of lethargy, which give rise to some difficulties in estimating the effect of the
CM angular distribution on the higher order Legendre component of the anisotropic scattering
in the L system.

According to the present approximation, the different kernel is defined for the different
coupling of the Legendre components of the CM angular distribution and the anisotropic scatter-
ing in the L system. Therefore such difficulties do not appear in the present approach.

From Egs. (1) and (4), the scattering kernel f;(u'~>u) can be defined in another form
fi(u'—w) =2 Jm D) - f.(w)0 (w—u). (29)
m=0

As was mentioned in chapter II[, the approximate procedure for fi(w'-»u) is associated with
replacing the differential polynomial J:.(DD) by means of the integral operator 72 Q' (D)/
P"(D). In chapter II, we discussed mainly the properties of these differential polynomials.
In this chapter we will derive the synthetic kernel for such approximate procedure. It was
also pointed out that the properties of the polynomials P}"(D) and Q"(D) are characterized
according to whether the degree n of these polynomials is odd or even. Namely, this fact im-
plies that the synthetic kernel approximated by the polynomials with even degree is of different
type from that approximated by those with odd degree. Therefore we will discuss the procedure
of deriving the synthetic kernel by separating into two cases.
A) n=2J

In this case the polynomials P,;'(D) and @Q;(D) are of the same degree. Therefore Equa-

tion (14) are rearranced as follows :

51 Th D* =Y ulf - BY (D), (30)
k=0
where
Z 5%17 A D
lm (D — VA:O (31>

2 VzJA s

1 — ! — im / .
and 035 ; ;=vs; ,;=1. The parameters r7", vy, o, and vl7, can be expressed in terms of the

proper determinants like p.", and ¢¥",. Of cource these parameters can be represented in terms
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of a;*. For the practical calculation of these parameters, the determinant representation is

more useful. The simultaneous equations for these parameters are written by

A

Z@ U;ZL,[L TI?IT“’:,U?;}L * 012’;,)\—*—7%77” * 2)2l.,J"L)\ X=O, 0: '“J’ (32)
frms

zJ%Ju- =0 A=J+1,J+2, 2] (33)
=0

The coefficients v} , are determined from Eq. (33),

v =07 e 0,0, 440, 1, ++-0) (34)

.T"

The unknowns ry% and v} are obtained by setting A=J and aA=J—1, respectively :

im
rf;;z: (___1> J D.I;nl,o_ , (35)

7,2

m (___1)J+1 J 1
Vor = ———m _7+1 (TZm lm ’ lm _Tl ’ -llm l’”’ Tl"’)

T2

(36)
while the coefficients olT', are the following :
—A-
abn .[rm+1 1(sz Tlm, /m "‘TL y *° lm Ttm, TJ ! y "5 Tz?n)
27, T lm (T .I i 7J 1 T T T B
.7+1 1 m nL ’ lm Lo , im ™ Limy Tlm)

(37)

Since the explicit expressions for the parameters in Eqgs. (30) and (31), are given we can define
the synthetic kernel for contribution of the m’th-order Legendre component of the angular
distribution in the CM system to the I’ th-order Legendre component of the anisotropic scatter-

ing in the L system :
QY (u'—u) =r" o (u—u') -+« R (D) - 6 (u—u'). (38)

That is, this is the G5 kernel which is the generalization of the Greuling Goertzel kernel.
In order to rewrite this G kernel in terms of the well-known functions we assume that

the second term on the right hand side of Eq. (38) has a unique composition into the sum of

>

simple fractions, i.e’,

J
le I: ] mlm "!"'l/ ,nl)m ,’nlm '_"L ,n
Im D —_ J “{ 27, 1 20, @ 2T, 2Jy. }
( ) _,__xlm’i—Z( l) ——{—f’m +7/7Z" D“*‘,dj’p‘ l/J,p.
(39)

where

= { (2 A7) RS (&) Vommyr, (40)



szu ( 1)#Re{x+‘d l.lrmu)R°n<x)}x=—B",m w‘l,"“ (41)
m3 w=(—1) Im{z-+37u+iri) - Ri7 (2) oepim iy (42)

Here we must note that in case of the even integer J the first term on the right hand side of

Eq. (39) does not appear and so in such case we must set [5"=0. Then the final form of

the synthetic kernel GY" is the following :

G (u'—w) =150 (w—u!) +ajme ™"

(]

im

3 ()R cos (2 () — 0 ¢A (13)
where
alm lm lms . b{m O ,im ( 1 7724_( un 2, (/hu =t -1 n??p. (44)
T UJJ ’ Hvz,/,#]/ mzl.u) nz./,# ’ an m[z,]n .
2,

The generalized Greuling Goertzel kernel for the l’th-order Legendre component of the

elastic scattering transition probability is expressed in terms of the above G%™ kernel, i.e.

L+2J
G (w—u) =2 [a(w) G (W'—u) (45)

m=ma.i(0.1~27)
The upper limit of this summation comes from the fact that since, as is known from Kq. (5),
the smaller lethargy moments than 772/ which is of the order (1/3M)* do not be taken into
account in the G, kernel, it is meaningless to include the GII" kernels which are constracted
only by lethargy moments of the order smaller than (1/3)*.
B) n=2J—1

In this case the polynomial Py (D) is of degree J, while Q" (D) is the polynomial

of degree J—1. Then KEquation (14) is reformulated in the form
S) 76 D= ol RE L (D), (16)
k=0

where

Z.: oA D
(D) = A= -
2—‘ LAJ— 1A

A=0

The coefficients o)} |, o7 ., and vi* |, are also detcrmined in the similar procedure to the

case of n=2J. 1In this case, however, these unknown parameters can easily be obtained by
using PL;_, , and g¢y/_, A definedin Egs. (24) and (25). That is,

lm

oy e G gy Dl (48)

im lm
Pru—1,4 Dy
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m
”lzy}b LA T pf,z LA = ( 1)J D1+1 0 (0 0 0, 1, 0"'0)’ (49)
Dar-1.s ~——
A+1
‘72{7—1,.7: qlf,‘.,—l'k - = 1 ‘LI":-IO (szy lm , : sz, 0- 0), (50)
qai-1,7-1 DJfl -1

where T;,.=0.
Here were we can get the formal expression for another type of the generalized synthetic kernel,

i.e.,
m(u""u) zvgl;l ?;L 1 (D) 6("/ u/’) (51)
This is the generalization of the well-known Wigner kernel.

The similar procedure to the case of the G4 kernel give rise to the following explicit

expression for the W™ (w'—>u) :

1afjnl(lbl~_+u> ::()}m/e—rym

(5]

23 (= 1) alfh cos {7 (w—w) = g} e Tk, (52)

u—u’)

lm im im im m im tm im im L.
where the parameters c7*, d7*, <i", &%, 97, and @i, correspond to a%, by, A, By, 7Y

and @7, in G4 kernel.
The form of this kernel resembles the GY™(u'->u) very much except the delta term which

appears in Eq. (43).

The generalized Wigner kernel for f:(#'—u) has the form

t+2J-1

Wiw'—u) = 2 fulu) Wi w'—u) (53)

m=max(0,l-2J+1)

The upper limit of the summation in this equation is owing to the same circumstance as in the

case of the generalized Greuling Goertzel kernel.

V. CONCLUDING REMARKS

Up to 1968, the synthetic kernel approximations (SKA) for neutron slowing down were
mainly developed within the Greuling Goertzel approximation. The SKA method has a large
merit that it enables us to allow a rapid evaluation of the collision integral.

It is obvious that the previous SKA’s have two difficulties, namely a) they have a pos-
sibility that they give unphysical results in calculating the higher order Legendre component
of the angular neutron flux, and b) they cannot demonstrate the detailed structure of neutron
flux in the vicinity of the scattering resonance.

In this paper, keeping the previous SKA’s merit, we have developed the SKA method in
order to avoid the previous SKA’s defects mentioned above. As a result we have obtained two
generalized synthetic kernels, i.e., G*™(uw'—>u) and W5 (u'—>u).

In the case of the isotropic scattering in the center of mass system the G9° kernel have

already been proposed as the G» kernel by YAMAMURA and SEKIYA!®. It must be noted
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that the previous G» kernel corresponds to the GJ;,, kernel of the present generalized Greuling
Goertzel kernel and so does not include the G9° kernel.
As a matter of cource, these approaches developed here do not give analytical formula for

neutron flux, but the G and W." approximations are very useful for calculations of the

collision integrals and the slowing parameters defined by DUNN and BECKER® and STACEY
(M®. Namely the collision integrals and the modified slowing down parameters can rapidly be

evaluated with the help of simple recursion relations corresponding to G‘™ and W.™ kernels.
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