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Summary. The successive over relaxation method is an effective iterative method for
solving the difference analogue of an elliptic partial differential equation. But its main difficulty
is that the optimum relaxation factor for any given problem can not usually be found prior to
getting the solution.

We! 2 have proposed an empirical new method, practical successive over relaxation method,
for solving the Dirichlet problem. This computational method was named NIKI's method by
Radlley et al.3. In this paper, we describe the proposed method and report the results of it and

two other methods of successive over relaxation method by applying tlhem to same problems.

Introduction.

One of the numerical methods solving an elliptic partial differential equation is the suc-
cessive over relaxation method, S.0.R.. In solving elliptic differential equations by finite
difference approximation, it is frequently necessary to solve a set of linear equaitons, which

can be expressed in the form
AX=b (1)

where A is a symmetric, positive deffinite matrix of order N with ones on the diagonal,
and X and b are column vectors. If we define L as the lower triangular matrix of A with
zeros on the diagonal, then L/, the transpose of L, is the upper trianglar matrix of A. In

terms of these matrices the iterative process of S.0.R. is defined by following relation;

X®=MX* P4 C (k=1,2, ) (2)
where M= —(wL-+I)"(oL'+ (@—1)1) (3)
and C=(w ' I+ L) b (4)

and o is a parameter known as the accelerating factor.

If we now define an error vector as €™ =X®_—-X where X is the exact solution A~b, it
follows from equations (2) to (4) that

e(/i) — Me(’\‘* 1).
To converge the iterative process, the condition

lime® =0

k—>o0

holds for any arbitrary initial vector €, so that it is necessary for all the eigenvalues of M

to lie within the unit circle. When the parameter « takes the value of unity, the iterative
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process defined above is the classical Gauss-Seidel method. The object of using a value of
other than unity is to reduce the spectral radius, i.e. the largest absolute values of the eigen-
values of the matrix M (We shall denote this spectral radius by Amas).

Ideally one would use the value known as the optimum accelerating factor, g, which
minimizes Amaz.

Young? has shown that the optimum accelerating factor is given by
(022/{1+'\/(1'—Amax)}'

It is, however, not easy to obtain the optimum ® for complex regions. Carré® and ForsytheS
have respectively proposed methods of 8.0.R. in which successively better estimates of the
optimum accelerating factor are obtained during the course of solution, but their methods are
very time-consuming,.

We have empirically noticed that, after several scans have been performed using @ smaller
than the optimum value, all E’l’“] are positive; when the factor is larger than the optimum
value, however, some E¥, are found to be negative. ~(The symbol E¥; denotes the residue
at each mesh point in scanning.)

This property appears after several scans. The number of scans for which all Ef; are
positive is dependent on the mesh to be caluculated.

For instance, on 100 mesh points, negative signs appear after five scans; on 1000 mesh
points, they appear after ten scans. When the acceleration factor is smaller than the optimum
value, however, negative signs are only a few percent of the K e

Whereas, when the acceleration factor is larger than the optimum value, many negative
signs appear even after a few scans, Using this property, we have developed a new technique
for the adaptive selection of approximate accelerating factor. The accelerating factor is varied
so that it tends asymptotically to its optimum value. The proposed method is very simple
compared to others, especially that of Carré, in view of the procedure for calculation.

The procedure is as follows. At first, all interior mesh points are set to be zero initially
and the accelerating factor @ is set up arbitrarily (it is here set to 1.5 for convenience).

Using this value, iterations are performed several times and the signs of all E¥, are des-
criminated thereafter.

(a). If they are all positive, 0.1 is added to . In this case only a few percent of the

negative signs are discorded. If all the signs of the K7 ; are positive when several iterations

and discriminations have been performed with this ®, the same procedure is repeated until a

negative sign appears. Then 0.05 is subtracted from o, and, adopting this value as the

e

approximate accelerating factor, iterations are repeated until all the Ew

converge.

(b). If some EY; have negative signs even at the first descrimination, 0.1 is subtracted
from ®. When several iterations and discriminations have been performed with this @; if
a negative sign appears, the same procedure is repeated until signs of all Ej, become posi-

tive. Then 0.05 is added to ®, and this value is adopted as the approximate accelerating

k

factor, iterations being repeated until all the £,

converge. It has been found that the sign
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property of the EY, can be definitely found it more than four iterations are taken.

We set the iteration number at 5 so that ® approaches the optimum accelerating factor

as soon as possible,

Experimental Result.

One of the FORTRAN program lists coding the proposed method is shown in Fig. (1).

We tried the Laplace’s equation, using

formula, to the Dirichlet problem,

In all cases, we judged a

solution to

be

obtained when all E*

square mesh and the usual five-points

difference

were equal to, or less

Table. 1 (case A) Comparison of Proposed and Other Methods

Proposed method Carré’s method Forsythe’s method
N N N
case 1 case 2 case 1 cage 2 case 1 cage 2
13X13 29 29 38 38 47 47
17X17 44 44 X X 66 66
23X 23 54 54 67 68 96 96
25X25 56 56 X X 103 103
3030 62 62 X X 129 129
3232 68 68 76 77 138 138
35X35 66 66 80 92 154 154
3737 70 70 83 ped 165 165
N = iteration number for convergence.
X = no convergence,

Table. 1 (case B) Comparison of Proposed and Other Methods

Proposed method Carré’s method Forsythe’s method
N N N
case 1 case 2 case 1 case 2 case 1 case 2

20X15 43 43 X X 65 65
20X 25 54 54 57 X 87 87
15X 40 46 46 58 59 78 78
20X 35 59 59 66 66 99 99
2040 61 61 68 X 102 102
25X33 63 63 65 81 118 118
21X43 62 62 73 73 111 111
2540 60 60 83 86 127 127

N =iteration number for convergence.

X = mno convergence.
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In case A, various size of square are used, and in case B, some rectangular regions.

In case 1, the scanning direction is Y-direction in two-dimensional Cartesian co-ordinates
and r-direction in axially symmetric co-ordinate.

In case 2, contrary, the scanning direction is X-directon and Z-diredtion.

Table 1 gives the interation numbers of the proposed method and compares them with other
methods in two-dimensional Cartesian co-ordinates.

Table 2 gives the results in axially symmetric co-ordinates (similar to Table 1).

Next, we tried the methods on mixed boundary problem.

Table. 2 (case A) Comparison of Proposed and Other Methods.

Proposed method Carré’s method Forsythe’s method
N N N
case 1 case 2 case 1 case 2 case 1 case 2
15X15 44 44 X X 59 59
20X20 59 59 64 64 80 80
23X 23 64 64 X X 97 97
25X 26 64 64 X X 110 110
30X30 70 70 X X 134 134
32X32 70 70 X X 142 142
35X35 83 83 X X 159 159
40X40 103 103 X 272 186 186
N = iteration number for convergence.

X = no convergence,

Table. 2 (case B) Comparison of Proposed and Other Methods

Proposed method Carré’s method Forsythe’s method
N N N
case 1 case 2 case 1 case 2 case 1 case 2
10X15 24 24 37 37 39 39
16X25 48 48 55 55 76 76
20X 25 63 63 X X 92 92
15X 40 53 53 61 61 82 82
20 40 67 67 68 69 107 107
25X 33 67 67 X X 124 124
21X43 70 70 T4 T4 117 117
25X 40 67 67 87 88 134 134
N = iteration number for convergence.

X

no convergence
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In case A, Neumann conditions were specified on one side of the square and Dirichlet
conditions on the others. In case B, Neuman conditions were applied to the longer side and
Dirichlet conditions to the other three sides.

Table 3 gives the results in 2-dimensional Cartesian co-ordinates (similar to Table 1).

Table 4 gives the results in axially symmetric co-ordinates (similar to Table 2).

Using Carré’s method in some problems, the solution never converged, owing to the occurrence
of a complex value in the over relaxation parameter.

In case of Forsythe’s method, the solution converged in all problems. However, his method

was very time-consuming.

Table. 3 (case A) Comparison of Proposed and Other Methods

Proposed method Carré’s method Forsythe's method

N N N
case 1 ‘ case 2 cage 1 i cage 2 cage 1 case 2
1313 0 | 40 48 48 59 59
17 X117 50 ‘ 50 65 65 79 79
23 X23 61 “ 61 74 75 116 116
|
25X 25 63 ] 63 X X 129 129
3030 69 1 69 75 83 159 159
32X32 80 : 80 e 94 172 172
35%35 96 \ 96 : 99 102 191 191
37x37 106 . 106 | X X 205 205
|

N
X = no convergence,

iteration number for convergence.

Table. 3 (case B) Comparison of Proposed and Other Methods.

Proposed method Carré’'s method " Forsythe’s method
N N N
- S P S
cage 1 i case 2 i cage 1 cage 2 case 1 cage 2

! - — — nt o p— e e — —_— —
20X15 | 52 52 61 61 93 93
20425 | 58 58 64 65 100 100

!
15x40 | 50 50 X X 78 8
20x35 | 61 61 | 64 65 103 103
25 33 ‘ 63 63 85 73 136 136
2143 ‘ 60 60 72 72 115 115
25X40 | 67 67 85 84 139 139
20540 | 60 60 62 62 108 108

N = iteration number for convergence.

X = no convergence.
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Table. 4 (cagse A) Comparison of Proposed and Other Methods

Proposed method Carré’s method Forgythe’s method
N N N
case 1 case 2 case 1 case 2 case 1 case 2
15X15 45 45 X X 62 62
20X20 60 60 X X 94 94
23 X 23 66 66 X X 100 100
25X 25 70 70 X X 116 116
30x30 76 76 X X 139 139
32 X32 83 83 X X 154 154
35X35 90 90 122 118 165 165
40 x40 118 118 X X 197 197
N = iteration number for convergence,

X = no convergence,

Table. 4 (case B) Comparison of Proposed and Other Methods.

Proposed method Carré’s method Forsythe’s method
N N N
case 1 case 2 case 1 case 2 case 1 case 2
10X15 31 31 40 40 41 41
16X25 51 51 57 57 81 81
20X 25 65 65 71 94 96 96
15X 40 58 58 62 62 86 86
2040 71 71 72 72 113 113
2533 66 66 70 71 132 132
2143 73 73 77 17 118 118
25X 40 74 74 91 89 139 139
N =iteration number for convergence,
Conclusion.

In accordance with our experiments on mixed boundary problem, it is clear that the pro-

posed method can be performed easily to estimate the over relaxation parameter and requires

fewer iterations than the others.
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Fig. 1 Sample program of the proposed method.

PROPOSED METHOD FOR DIRICHLET BOUNDARY PROBLEM
INTER*2 L (50,50)

DIMENSION U (50, 50)

READ(, 99) IMAX, JMAX, ERS, H

FORMAT (213, 2F17.4)

EPS-MAXIMUM RESIDUAL

READ (5,100) L

FORMAT (5011)

DO 10 I1=1, IMAX

DO 10 J=1, JMAX

IF (L (1,J)-2) 70,71, 70

U {,d)=0.0

GO TC 10

U@, Jd)=1.0

CONTINUE

K=0

K-ITERATION UNMBER WITH DECREASED OMEGA
OMEGA=1.5

DO 16 M=1,5

NEGATI=0

NEGATI-NUMBER OF NEGATIVE RESIDUAL
NUMBER=0

NUMBER-NUMBER OF CALCULATING MESH POINTS
NCONVE=0

NCCNVE-NUMBER OF COMBERGING MESH POINTS
DO 17 I=1, IMAX

DO 17 J=1, JMAX

IF (L (1,J) .LE. 2) GO TO 17

RESIDU OMFGA*((U(T-1,J)+U@,J—-1)+Ud+1,3)+U0(J,J+1))/4 —UQ, J))(H*H)

U, ) =u(J,J)+RESIDU
NUMBER=NUMBER+1
ARESID=ABS (RESIUD)

IF (ARESID .LE. EPS) GO TO 18
NCONVE=NCONVE+1

IF (RESIDU .GE. 0.) GO TO 17
NEGATI=NEGATI+1

CONTINNUE

IF (NCONVE .EQ. 0) GO TO 5000

CONTINUE

IF (K .GE. 1) GO TO 2000

IF (NEGATI .LE. (NUMBER*0.05)) GO TO 1350
OMEGA =0MAGE—0.05

75
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43 K=K+1

44 GO TO 2000

45 1350 OMEGA=OMEGA+0.1

46 IF(OMEGA .GE. 1.8) OMEGA=1.85
47 GO TO 2000

48 5000 WRITE (6, 21) (I, J, UQ, J), I=1, IMAX), J=1, JMAX)
49 21 FORMAT (3 (58X, 13, 513, 'U (I,J)="E15.7))

50 STOP

51 END
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