教育用分子軌道計算システム eduDV の開発 (2)

岡山理科大学 理学部 化学科 坂根弦太

gsakane@chem.ous.ac.jp

限られた講義時間内で学生が、何の予備知識もなしに、いきなり周期表元素の原子軌道や、教科書に

1. はじめに

掲載されている様々な分子の分子軌道を自ら計算して、原子・分子軌道のエネルギー準位を知り、原子・ 分子軌道の三次元的な分布状況を確認することができる"教育用分子軌道計算システム eduDV"を開発 [1],整備し[2], GUI での動作を実現[3·4], さらに開発を続け[5],最新版のプログラム一式[6]とマニュ アル[7]、および論文[8]を一般公開している. eduDV、および結晶構造、電子・核密度等の三次元デ ータ可視化プログラム VESTA を含んだ "DV-Xα法のための統合支援環境" [4]は, eduDV[1-8], DV-Xα法[9·11], 秀丸エディタ[12], DV-Xα法計算支援環境[13], VESTA[14·15]から構成されており, 教育・研究目的ではほぼ無償で(秀丸エディタのみシェアウェア,ただし金銭的に難儀している学生の 方(学校内設置のパソコンで学生の方が使用する場合もOK)には秀丸エディタフリー制度(アカデミ ックフリー個人・アカデミックフリー団体)がある)全ての環境を構築することができる. 岡山理科大 学情報処理センターの学生実習用パソコンの全てに eduDV, DV-Xα法, 秀丸エディタ, DV-Xα法計算 支援環境、VESTA がインストールされており、基礎化学・無機・量子化学系の講義・実習で活用できる. 現在のところ,理学部化学科の1年次前期必修科目"コンピュータ入門 I"(担当:坂根,畠山),2年 次後期選択科目"無機化学 III"(担当:坂根),大学院理学研究科化学専攻科目"錯体化学 II"(担当:坂 根)でこの eduDV, VESTA を含んだ GUI ベースの "DV-Xα法のための統合支援環境" を利用している. 教育用分子軌道計算システム eduDV は、分子の形(点群)を選び、必要最低限の情報(分子を構成す る原子の原子番号,原子間距離,原子間角度)を会話形式で入力するのみで,DV-Xα分子軌道法プログ ラムを実行するのに必要な入力ファイル(F01, F25, F05)が準備され, マリケン・ポピュレーション・ アナリシスを使ったセルフ・コンシステントな方法(セルフ・コンシステント・チャージ法)で各原子 軌道の電子数がセルフ・コンシステントになるまで繰り返し計算が行われ、計算が収束したのち、各分 子軌道のエネルギー固有値の表(F08E)を出力し、引き続いてそれぞれの分子軌道が、どのような原子 軌道から構成されているかを調べるポピュレーション解析プログラム (POPANL), 各原子の有効電荷 (Net Charge)を求めるプログラム (NETC),原子間の共有結合性の強さの目安となる有効共有結合電荷 (Bond Overlap Population)を計算するプログラム (BNDODR), F08E のそれぞれの分子軌道の成分を 図示するプログラム(LVLSHM), HOMO·LUMO 近傍の分子軌道間のエネルギー差(単位:eV)を計 算して波数(単位:cm⁻¹) および波長(単位:nm) に変換するプログラム(HLGAPS), 全分子軌道お よび電子密度,静電ポテンシャルについて,VESTA で読めるデータファイルを作成するプログラム (CONTRDALL) などの周辺プログラムが全自動で実行される. ユーザ (学生) は、あとは VESTA で 任意の分子軌道の波動関数等値曲面図、分子の中での電子の僅かな偏りが俯瞰できる静電ポテンシャル

マップなどを三次元可視化して, 自由に拡大・縮小, 回転させながら手に取るように眺める事ができる.

化学の講義・実習に eduDV を用いる場合,まずは単原子(原子軌道)を取り扱い,量子数(主量子数,方位量子数,磁気量子数)と軌道の三次元的形状を理解・記憶するところから始まり,二番目に水素分子(H_2),窒素分子(N_2),酸素分子(O_2)などの等核二原子分子の分子軌道($D_{\infty h}$ 対称)を取り上げ,結合性分子軌道と反結合性分子軌道の形状(位相)の違い,常磁性分子と反磁性分子の違い(スピン量子数)などを学習する.三番目に一酸化炭素分子(O_1)などの異核二原子分子(O_2)などの異核二原子分子(O_3)などを学習する.そのあとは身近な小分子軌道(基底関数)の線形結合で形成される分子軌道の本質を学生は実感する.そのあとは身近な小分子,例えばアセチレン分子(O_3)ない方が、水分子(O_3)、水分子(O_4)、大フッ化ウラン分子(O_5)、対称)、ベンゼン分子(O_6)、対称),メタン分子(O_6)、対称)、大フッ化ウラン分子(O_6)、大力がか)などを次々と計算し、分子の形状,点群,分子軌道の多様性を知ることになる.

様々な分子の分子軌道を計算した際,多種多様な結合の比較が興味深い.水分子の O-H 結合,アンモニア分子の N-H 結合,メタン分子の C-H 結合などはいわゆる単結合,ベンゼン分子の C-C 結合は共役系 1.5 重結合,アセチレン分子の C=C 結合は 3 重結合などと呼ばれているが,それらは原子間の共有結合性の強さの目安となる有効共有結合電荷(Bond Overlap Population)を計算するプログラム (BNDODR) の出力(BN8)を読みとることで結合の強さを比較検討できるし,さらに HOMO 近傍の電子占有分子軌道の三次元的形状を VESTA で読みとることにより,より具体的に結合の正体を突き止める事ができる.限られた講義・実習時間内で,身近な分子の電子状態を $eduDV+DV-X\alpha$ 法計算支援環境を GUI として $DV-X\alpha$ 法で計算し,計算結果(数値,三次元的な画像)を出力できることは教育的価値(効果)が高い.

化学の教科書で言われている単結合, 共役系 1.5 重結合, 二重結合, 三重結合などは, 通常, 教科書では定性的な図(結合性分子軌道の数と形状)で説明されているが, 実際には例えば同じ単結合といえども結合の強さは同一ではない. 単結合を有する異なる分子をそれぞれ電子状態計算すれば, すべての有効共有結合電荷が 1.0 となるわけではなく, 例えば 0.65 であったり, 0.72 であったりと, 様々な程度の有効共有結合電荷が算出され, 結合の強さは具体的に比較検討できる. VESTA で結合性分子軌道を三次元可視化し, その分子軌道が, どのような原子軌道から構成されているかを調べるポピュレーション解析プログラム (POPANL) の出力(F08P)を読みとれば, 結合の定量的な本質を見極める事ができる.

そうは言っても、単結合、共役系 1.5 重結合、二重結合、三重結合という定性的な分類は、化学結合の分類としては有意である。それぞれの結合を有する身近で代表的な分子の電子状態を計算、その結合を深く理解する事は教育的価値が高い。化学でこれらの結合の分類がもっとも多く出現するのは、有機化学の炭素一炭素間結合であろう。炭素一炭素結合における単結合、共役系 1.5 重結合、二重結合、三重結合を有する代表的な分子としては、単結合はエタン(C_2H_6 , D_{3d} 対称)、共役系 1.5 重結合はベンゼン(C_6H_6 , D_{6h} 対称)、二重結合はエチレン(C_2H_4 , D_{2h} 対称)、三重結合はアセチレン(C_2H_2 , $D_{\infty h}$ 対称)であり、これらが最も単純なものであろう。多くの有機化学・量子化学の教科書でもこれらの分子が取り扱われている。

これまでの eduDV では、ベンゼン(C_6H_6 , D_{6h} 対称)、アセチレン(C_2H_2 , $D_{\infty h}$ 対称)は計算できていたものの、エタン(C_2H_6 , D_{3d} 対称)、エチレン(C_2H_4 , D_{2h} 対称)は計算できなかった.

そこで今年度は、eduDV で計算可能な分子形状の項目を一つ増やし(現在 20 種類であったものを 21 種類に拡張し)、エチレンに代表される A_2B_4 型(D_{2h} 対称)分子の計算を可能とするべく、Fortran 77 言語を用いてコーディングし、新たなソースコードを完成させた。その結果、炭素-炭素間が 1.5 重結合 (ベンゼン)、二重結合(エチレン)、三重結合(アセチレン)の各分子を講義で取り扱えるようになった。

エタンに代表される A_2B_6 型(D_{3d} 対称)分子については、来年度にプログラミングする予定である.

2. 開発環境

情報処理センターより貸与されたノートパソコン(東芝 Dynabook SS 2010 DS86P/2, CPU: Mobile Intel Pentium III 866 MHz, RAM: 256 MB, OS: Windows 2000 Service Pack 4)に Open Watcom Fortran77 compiler (Version 1.9)[16]をインストールした環境を用いた.

3. ソースコード

エチレン型 A_2B_4 型 (D_{2h} 対称) 分子に関するソースコードとして, マニュアル(ステップバイステップ) 実行版プログラム d2h24, ノンスピン全自動実行版プログラム d2h24n, スピン版全自動実行版プログラム d2h24s の 3 本を作成したが, 紙面の都合上, ここではノンスピン全自動実行版 d2h24n のみ掲載する.

```
3-1. 【c:\dvxa\scat\d2h24n.f】Fortran 77 ソースコード
  --+----1----+----2----+----3----+----4----+----5----+----6----+----7--
c d2h24n (D2h symmetry, A2B4 type Molecule (e. g. C2H4).
                                             symOrb NON-SPIN version )
  2011.02.16 Version 1.0 Sakane. Genta
С
      ( Department of Chemistry, Okayama University of Science, Japan )
С
     program d2h24n
      real*8 a (6, 3), b (6, 3), bohr, aaadis, aabdis, baadis, babdis, az, bz. ax. bx
    &, pi, rad, dbabang, rbabang, hfaaadis, hfbaadis, hfdbabang, hfrbabang
      integer z(6), n(6)
     open (unit=07, form='formatted', status='unknown',
           access='sequential', file='d2h24n.out')
     open (unit=08, form='formatted', status='unknown',
           access='sequential', file='f01')
     bohr=0.5291772108
     pi=3. 1415926535
      rad=180/pi
     write(*. 1010)
   10 write(*, 1020)
      read(*,*) z(1)
      if(z(1). le. 0) then
     write(*. 1510)
     write(*. 1520)
     write(*, 1530)
     go to 10
     else
     go to 20
      end if
   20 if(z(1).gt.94) then
     write(*, 1510)
     write(*, 1520)
     write(*, 1530)
     go to 10
     else
     ----1----+----2----+----3----+----4----+---5----+----6----+----7--
```

```
--+---1----+---2----+----3----+----4----+---5----+----6----+----7--
   go to 30
   end if
30 write(*. 1030)
   read(*,*) z(3)
   if(z(3). le. 0) then
   write(*, 1510)
   write(*, 1520)
   write(*, 1530)
   go to 30
   else
   go to 40
   end if
40 if (z(3).gt.94) then
   write(*, 1510)
   write(*, 1520)
   write(*, 1530)
   go to 30
   else
   go to 50
   end if
50 write (*, 1040)
   read(*,*) aaadis
   write(*, 1050)
   read(*,*) aabdis
60 write(*, 1060)
   read(*,*) dbabang
   if (dbabang, le. 0) then
   write(*, 1610)
   write(*, 1620)
   write(*, 1630)
   go to 60
   else
   go to 70
   end if
70 if (dbabang, ge. 180) then
   write(*, 1610)
   write(*, 1620)
   write(*, 1630)
   go to 60
   else
   go to 80
   end if
80 baadis=aaadis/bohr
   babdis=aabdis/bohr
   hfaaadis=aaadis/2
   hfbaadis=baadis/2
   rbabang=dbabang/rad
   ----1-----5-----6-----7--
```

```
-+---1-----6------7--
  hfdbabang=dbabang/2
  hfrbabang=rbabang/2
  z(2) = z(1)
  z(4) = z(3)
  z(5) = z(3)
  z(6) = z(3)
  n(1)=1
  n(2)=1
  n(3) = 2
  n(4) = 2
  n(5) = 2
  n(6) = 2
  ax=aabdis*sin(hfrbabang)
   az=aabdis*cos(hfrbabang)
  bx=babdis*sin(hfrbabang)
  bz=babdis*cos(hfrbabang)
   a(1, 1)=0
  a(1, 2)=0
   a(1,3) = hfaaadis
  a(2, 1)=0
   a(2, 2) = 0
   a(2,3) = -hfaaadis
   a(3, 1)=0
  a(3, 2) = ax
   a(3,3) = hfaaadis + az
   a(4, 1)=0
  a(4, 2) = -ax
   a(4, 3) = hfaaadis+az
   a(5, 1) = 0
   a(5, 2) = ax
   a(5,3) = -hfaaadis-az
   a(6, 1) = 0
   a(6, 2) = -ax
   a(6,3) = -hfaaadis-az
  b(1, 1) = 0
  b(1, 2) = 0
  b(1,3) = hfbaadis
  b(2, 1)=0
  b(2, 2) = 0
  b(2,3) = -hfbaadis
  b(3, 1) = 0
  b(3, 2) = bx
  b(3, 3) = hfbaadis + bz
  b(4, 1)=0
  b(4, 2) = -bx
  b(4, 3) = hfbaadis + bz
  b(5, 1) = 0
  ----1-----5-----6-----7--
```

```
---+---1----+---2---+---3----+---4----+---5----+---6----+---7--
    b(5.2) = bx
    b(5, 3) = -hfbaadis-bz
    b(6, 1) = 0
    b(6, 2) = -bx
    b(6.3) = -hfbaadis - bz
    write(7, 3010)
    write (7, 3020)
    write(7, 3030)
    do 101 i=1, 6
    write (7, 1000) b (i, 1), b (i, 2), b (i, 3), n (i)
 101 continue
    write (8, 2010)
    do 201 i=1, 6
    write(8, 2020) z(i), n(i), a(i, 1), a(i, 2), a(i, 3)
201 continue
    write(8, 2030)
    write (8, 2040)
    write(8, 2030)
    write (8, 2050)
    write(8, 2060)
    write (8, 2070)
    write (8, 2080)
    go to 204
202 write(*, 1001)
203 write(*, 1002)
204 stop
1000 format (3d20, 10, i5)
1001 format('*** Read Error ***')
1002 format('*** Data Not Found ***')
1010 format (/, '*** Program D2h24 (sym0rb version)', /, '*** for A2B4 type
   &molecule (e. g. C2H4)')
1020 format(/, 3x, 'Input Atomic Number(Z) (1 < Z < 94) of Central Atom A &, Z = ? ', $)
1030 format(/, 3x, 'Input Atomic Number(Z) (1 < Z < 94) of Terminal Atom &B, Z = ?', $)
1040 format(/, 3x, Input Distance(angstrom), A - A = ?, $)
1050 format(/, 3x, Input Distance(angstrom), A - B = ?, $)
1060 format (/, 3x, Input Angle (degree) ( 0 deg. < Angle < 180 deg.), B-A-B
   \& = ? ', \$)
1510 format(//, '
                   1520 format('
                *** Error *** Atomic Number(Z) (1 < Z < 94) ***')
1530 format('
                1610 format(//,'
                   *** Error *** B-A-B ( 0 deg. < Angle < 180 deg.)')
1620 format('
1630 format('
                2010 format(' | Z | | NEQ | | X | |
                                  Υ
                                       Ш
                                           Ζ
2020 format (2x, i3, 1x, i4, 3 (f10. 5))
---+---1----6-----6-----7--
```

```
-+---1---+---2---+---3----+--
                                                     --5----+----6----+----7--
 2030 format('----
 2040 format('|NEQ||
                        CHG ||U/D||
                                         RD
                                               Ш
                                                     VD
                                                                1')
                                                  1:atomic)')
 2050 format('
                          Unit
                                    (0:angstrom
                   0
 2060 format('
                          Spin
                                                  1:spin )')
                   0
                                    (0:non-spin
 2070 format('
                          M. P.
                                    (0:No
                                                   1:Yes
                   0
 2080 format('20000
                          Sample Point (<100000, =0 autoset)')
                   8')
 3010 format('
 3020 format('
                   1
                              1
                                    1
                                         1
                                               1
                                                     1
 3030 format('
                         1
                              1
                                    1
                                         1
                                               1
                                                          1')
                   1
                                                     1
      end
        -1----+----5----+----6----+----7--
 3-2.【c:\dvxa\lscat\d2h24n.bat\]Open Watcom コンパイル実行ファイル (makefile)
 ---+---1----+---2----+---3----+
wfl386 /quiet /nowarnings d2h24n.f
 ----+----1----+----2---+----3----+
 3-3.【c:\dvxa\data\d2h24】対称軌道ファイル(実数型球面調和関数の線形結合)
----+---1-----2-----3-----3-----4-----5-----6-----6----7----7----8---+
   16 ag /z^2 D2h
   0
    0
         1
            4.000000
                             2 4.000000
         2
    1
    0
            4.000000
                             2 - 4.000000
                        0
    2220323
         1
            4.000000
                        2
                             2 4.000000
         2
         1
            4.000000
                             2 4.000000
                        0
         2
             1
         1
            4.000000
                        2
                             2 -4.000000
         2
    Ŏ
            4.000000
                        0
                             2 - 4.000000
    0
         4
    0
            2.000000
                        0
                             4 2.000000
                                                  5 2.000000
                                                                 0
                                                                      6 2.000000
                                             0
    1
         3
            2.000000
   0
                        0
                                2.000000
                                             0
                                                  5 -2.000000
                                                                 0
                                                                      6 - 2.000000
    1
         3
                                                  5 2.000000
            2.000000
                             4 -2.000000
                                                                -1
                                                                      6 - 2.000000
   -1
                       -1
                                            -1
   22202-132303-13
         3
            2.000000
                        2
                                2. 000000
                                             2
                                                  5 2.000000
                                                                 2
                                                                      6 2,000000
         4
         3
            2.000000
                             4 2.000000
                                             0
                                                  5 2.000000
                                                                 0
                        0
                                                                      6 2.000000
         3
            2.000000
                             4 -2.000000
                                                  5 -2.000000
                                                                      6 2.000000
                       -1
                                            -1
                                                                -1
            2.000000
                             4 2.000000
                                             2
                                                  5 -2.000000
                                                                 2
                                                                      6 - 2.000000
            2.000000
                        0
                             4 2.000000
                                             0
                                                  5 -2.000000
                                                                 0
                                                                      6 - 2.000000
            2.000000
                       -1
                             4 -2.000000
                                                  5 2.000000
                                                                      6 - 2.000000
                                            -1
                                                                -1
            2.000000
                       -3
                             4 -2.000000
                                            -3
                                                     2.000000
                                                                -3
                                                                      6 - 2.000000
                                                                      -7---+---8---+
```

1	2	+-	3+4	+	5+6	+	7+8+
8 b1g 2 2							
-2 1	4. 000000	-2	2 4. 000000				
	4. 000000	-2	2 -4.000000				
1 4 1 3	2.000000	1	4 -2. 000000	1	5 2.000000	1	6 -2.000000
2 4 1 3 2 4 -2 3 3 4 3 3 4 1 3 -2 3	1 2. 000000	1	4 -2. 000000	1	5 -2.000000	1	6 2.000000
2 4 -2 3	. 1	-2	4 2. 000000	-2	5 2.000000	-2	6 2.000000
3 4 3 3	. 1	3	4 -2. 000000	3	5 2.000000	3	6 -2.000000
3 4 1 3	1	1	4 -2. 000000	1	5 2.000000	1	6 -2.000000
3 4 -2 3	1						
10 b2g	/xz	-2	4 2. 000000	-2	5 -2.000000	-2	6 -2.000000
1 2 1 1	4. 000000	1	2 -4.000000				
2 2 1 1		1	2 4. 000000				
3 2 3 1 3 2	! 1 4. 000000	3	2 -4.000000				
3 2 1 1		1	2 -4.000000				
1 4 1 3		1	4 2. 000000	1	5 -2.000000	1	6 -2.000000
2 4 -2 3		1	4 2.000000	1	5 2.000000	1	6 2.000000
-2 3 3 4 3 3		-2	4 -2. 000000	-2	5 –2. 000000	-2	6 2.000000
2 4 1 3 2 4 -2 3 3 4 3 3		3	4 2. 000000	3	5 –2. 000000	3	6 –2. 000000
1 3	2. 000000	1	4 2. 000000	1	5 -2.000000	1	6 -2.000000
3 4 -2 3 14 b3g	2. 000000	-2	4 -2. 000000	-2	5 2.000000	-2	6 -2.000000
1 2	! 1		0 4 000000				
-1 1 2 2 -1 1	4. 000000	-1	2 -4.000000				
-1 1 3 2	4. 000000 ! 1	-1	2 4. 000000				
-1 1 3 2	4. 000000	-1	2 -4. 000000				
-3 1	4. 000000	-3	2 -4. 000000				
3 2 -1 1 3 2 -3 1 0 4 0 3 1 4	2. 000000	0	4 -2. 000000	0	5 -2.000000	0	6 2. 000000
0 3	2. 000000	0	4 -2. 000000	0	5 2.000000	0	6 -2.000000
1 4 -1 3	2.000000	-1	4 2. 000000	-1	5 -2.000000	-1	6 -2.000000
2 4 2 3 2 4	1 2. 000000	2	4 -2.000000	2	5 -2.000000	2	6 2.000000
2 4 +1	1 2	+-	34	+	5+6	+	7+8+

+	12	+-	34	+	56	+	7+8+
	3 2. 000000 4 1 3 2. 000000	0	4 -2. 000000	0	5 -2.000000	0	6 2.000000
-1 3	4 1	-1	4 2. 000000	-1	5 2. 000000	-1	6 2. 000000
2 3	3 2. 000000 4 1	2	4 -2. 000000	2	5 2.000000	2	6 -2.000000
Q (3 2.000000	0	4 -2. 000000	0	5 2.000000	0	6 -2.000000
-1	4 1 3 2.000000	-1	4 2. 000000	-1	5 -2.000000	-1	6 -2.000000
-3	4 1 3 2. 000000	-3	4 2. 000000	-3	5 -2.000000	-3	6 -2.000000
8 au / 2 - 2	/xyz 2 1						
8 au / 2 -2 -2 -2 -2 -2	1 4. 000000 2 1	-2	2 -4. 000000				
1 4	1 4. 000000 4 1	-2	2 4. 000000				
1 (3 2. 000000 4 1	1	4 -2. 000000	1	5 -2.000000	1	6 2. 000000
1 3	3 2. 000000 4 1	1	4 -2. 000000	1	5 2. 000000	1	6 -2.000000
-2	3 2. 000000	-2	4 2. 000000	-2	5 -2.000000	-2	6 -2.000000
3 3	4 1 3 2. 000000	3	4 -2. 000000	3	5 -2.000000	3	6 2.000000
1 (4 1 3 2. 000000	1	4 -2.000000	1	5 -2.000000	1	6 2.000000
	4 1 3 2. 000000	-2	4 2. 000000	-2	5 2.000000	-2	6 2.000000
16 b1u 0 2	/z 2 1						
0	1 4. 000000 2 1	0	2 -4. 000000				
0 -	1 4. 000000 2 1	0	2 4. 000000				
2	4. 000000 2 1	2	2 -4.000000				
	1 4. 000000	0	2 -4.000000				
2	2 1 1 4. 000000	2	2 4. 000000				
	2 1 1 4. 000000	0	2 4. 000000				
0 4	4 1 3 2. 000000	0	4 2.000000	0	5 -2.000000	0	6 -2.000000
1 4	4 1 3 2. 000000	0	4 2. 000000	0	5 2.000000	0	6 2.000000
1 4	4 1 3 2. 000000	-1	4 -2. 000000	-1	5 -2.000000	-1	6 2.000000
	4 1 3 2.000000	2	4 2.000000	2	5 -2. 000000	2	6 -2. 000000
2	4 1 3 2. 000000	0		0	5 -2. 000000		6 -2.000000
2 4	4 1						
	3 2.000000	-1		-1	5 2.000000	-1	
	3 2. 000000 4 1	2	4 2. 000000	2		2	
	12	+-	34	+	5+6	+	7+8+

1	2	+-	34	+-	5+6	+	7+8+
0 3 3 4	1	0	4 2. 000000	0	5 2. 000000	0	6 2. 000000
-1 3	2.000000	-1	4 -2.000000	-1	5 -2.000000	-1	6 2.000000
-3 3	2.000000	-3	4 -2.000000	-3	5 -2.000000	-3	6 2. 000000
1 2	/y ! 1		0 4 000000				
-1 1 2 2	4. 000000 ! 1	-1	2 4. 000000				
-1 1 3 2	4. 000000 1	-1	2 -4. 000000				
-1 1 3 2	4. 000000	-1	2 4. 000000				
-3 1	4. 000000	-3	2 4. 000000				
0 4	2. 000000	0	4 -2.000000	0	5 2.000000	0	6 -2.000000
-1 1 3 2 -1 1 3 2 -3 1 0 4 0 3 1 4 0 1	2.000000	0	4 -2. 000000	0	5 -2.000000	0	6 2.000000
-1 3	1 2. 000000	-1	4 2.000000	-1	5 2.000000	-1	6 2.000000
2 4 2 3 2 4 0 3 2 4 -1 3 4 2 3 4 0 3 4 0 3 4 1 3	1 2. 000000	2	4 -2.000000	2	5 2.000000	2	6 -2.000000
2 4 0 3	1 2. 000000	0	4 -2. 000000	0	5 2.000000	0	6 -2.000000
2 4 -1 3	1						
-1 3 3 4	. 1	-1	4 2.000000	-1	5 -2.000000	-1	6 -2.000000
2 3 3 4		2	4 -2. 000000	2	5 –2. 000000	2	6 2. 000000
3 4 0 3 3 4		0	4 -2. 000000	0	5 -2.000000	0	6 2. 000000
3 4 -1 3	2. 000000	-1	4 2. 000000	-1	5 2.000000	-1	6 2. 000000
3 4		-3	4 2. 000000	-3	5 2.000000	-3	6 2.000000
10 b3u 1 2	! 1						
1 1 2 2	4. 000000 1	1	2 4. 000000				
1 1	4. 000000	1	2 -4. 000000				
3 1	4. 000000	3	2 4. 000000				
	4. 000000	1	2 4. 000000				
1 4 1 3	2. 000000	1	4 2. 000000	1	5 2.000000	1	6 2.000000
2 4 1 3	1 2. 000000	1	4 2. 000000	1	5 -2. 000000	1	6 -2.000000
2 4 -2 3	. 1	-2	4 -2. 000000	-2	5 2.000000	-2	6 -2.000000
2 4 1 3 2 4 -2 3 3 4 3 3 4 1 3 -2 3	. 1	3	4 2.000000	3	5 2.000000	3	
3 4	. 1						
1 3 3 4	. 1	1	4 2.000000	1	5 2.000000	1	6 2.000000
-2 3	2. 000000	-2	4 -2. 000000	-2	5 –2. 000000	-2	6 2. 000000
1	2	+-	34	+	5+6	+	7+8+

```
-5----+---6----+---7---+--8--+
                      ---+---3----+----4----+--
         symOrb v2.3d
  ** Nsym, Isyml, Jsyml **
D2h
      with angular momentum= \{\{0, 3\}, \{0, 3\}\}
 Number of atoms= 6
  Equivalent atoms
a01
      a02
a03
      a04
            a05
                   a06
  Positions of atoms
                      Hold[1.26517]
                                        1
                      -Hold[1, 26517]
0
                                        2
    0
0
    Hold[1.79046]
                      Hold[2, 272]
                                        3
0
    -Hold[1.79046]
                      Hold[2, 272]
    Hold[1.79046]
                     -Hold[2.272]
0
                                        5
                     -Hold[2, 272]
0
    -Hold[1, 79046]
D2h Positions of atoms
        0.000000000
                             0.000000000
                                                  1. 2651700000
                             0.000000000
        0.000000000
                                                 -1.2651700000
                                                                         2
3
4
        0.000000000
                             1. 7904600000
                                                  2. 2720000000
                                                                   2
2
2
                            -1.7904600000
        0.000000000
                                                  2. 2720000000
                                                                         5
        0.000000000
                             1. 7904600000
                                                 -2.2720000000
        0.000000000
                            -1.7904600000
                                                 -2.2720000000
 3-4. 【c∶¥dvxa¥exec¥d2h24n. bat】プログラム全自動実行バッチファイル
----+---1----+---2----+----3----+----4----+5----+---6----+---7
@echo off
if exist f01 goto err1
if exist f25 goto err2
%dvdir%¥object¥d2h24n.exe
copy %dvdir%\data\d2h24 f25
call %dvdir%¥exec¥makef05scfs
call %dvdir%\exec\existf05
if exist F05exist.txt goto fexist
goto err3
fexist
del F05exist.txt
goto scatrun
:scatrun
----+----1----+----2----+----3----+----4----+----5----+----6----+----7
```

```
----+----5----+----6------7
call %dvdir%¥exec¥dvscat
if exist converge bat goto del1
goto cont1
∶del1
del converge bat
goto cont1
∶cont1
if exist convd.txt goto del2
goto cont2
:del2
del convd.txt
goto cont2
∶cont2
if exist notconv.txt goto del3
goto cont3
:del3
del notconv.txt
goto cont3
:cont3
call %dvdir%¥exec¥cnvchk150
call converge, bat
if exist convd.txt goto cont4
if exist notconv.txt goto cont4
del converge bat
goto scatrun
∶cont4
del converge bat
call %dvdir%¥exec¥contrdall
dir/w *.sca
call %dvdir%¥exec¥netc
call %dvdir%¥exec¥bndodr
call %dvdir%¥exec¥popanls
rename FO8P FO8P S
call %dvdir%¥exec¥popanl
call %dvdir%¥exec¥atlist >atlist.out
call %dvdir%¥exec¥bllist >bllist.out
call %dvdir%¥exec¥prests
call %dvdir%¥exec¥makel04 <%dvdir%¥data¥three
call %dvdir%¥exec¥lvlshm
call %dvdir%¥exec¥hlgap
call %dvdir%¥exec¥hlgaps
type i08
type f08e
if exist notconv.txt goto notconv
del convd. txt
goto end
 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7
```

```
-+---1---+---2---+---3---+---4---+---5---+---6----+---7
inotconv
echo:
echo *** WARNING ** WARNING ** WARNING ** WARNING **
echo *******************
echo *** SCAT (NonSpin version) has not been converged yet. ***
echo *** WARNING ** WARNING ** WARNING ** WARNING **
echo *********************
del notconv.txt
goto end
:err1
echo ***ERROR*** f01 already exist
goto end
∶err2
echo ***ERROR*** f25 already exist
goto end
∶err3
echo ***ERROR*** F05 not exist
goto end
∶end
 --+---1---+---6---+---7
3-5. 【c:\dvxa\macros\eduDV.mac】eduDV メニュー秀丸エディタマクロ
----+----1-----6------7
menu
"01. D∞h 対称【等核二原子分子】A2 型分子(H2, 02, N2 など)..."
"02. C∞v 対称【異核二原子分子】AB 型分子(一酸化炭素や塩化水素など)...."
"03 . D∞h 対称【直線 AB2 型分子】B-A-B 型分子(二酸化炭素など)...",
"04. D∞h 対称【直線 A2B2 型分子】B-A-A-B 型分子(アセチレンなど)...
"05. C∞v 対称【直線 ABC 型分子】A-B-C 型分子(シアン化水素など)...
"06. C∞v対称【直線 ABCD 型分子】A-B-C-D 型分子(HCNO など)...."
"07. C2v 対称 【折れ線 AB2 型分子】AB2 型分子(水や硫化水素など)..."
"08. C3v 対称 【三角錐 AB3 型分子】AB3 型分子(アンモニアなど)...
          【エチレン型分子】A2B4 型分子(エチレンなど)...
"09. D2h 対称
"10. D3h 対称
         【平面正三角形型分子】AB3 型分子(三フッ化ホウ素など)...
"11. D4h 対称
         【平面正四角形型分子】AB4 型錯イオン([PtCl4]2-など)...",
          【平面正六角形型分子】A6B6 型分子(ベンゼンなど)...
"12. D6h 対称
"13. Td 対称
          【正四面体型分子】AB4 型分子(メタンや四塩化炭素など)...",
          【正八面体型分子】AB6 型分子(六フッ化硫黄など)...",
"14. 0h 対称
"15. Td 対称
          【正四面体型分子】[A(BC)4]型錯体([Ni(CO)4]など)...
"16. Oh 対称
          【正八面体型分子】[A(BC)6]型錯体([Cr(CO)6]など)...
"17. D2h 対称
         【正八面体型】[M(H20)6]n+アクア錯イオン...:
          【正四面体型】[M(L)4]n+ or [M(L)4]n− 錯イオン...″,
"18. Td 対称
         【正八面体型】[M(L)6]n+ or [M(L)6]n- 錯イオン...",
"19. Oh 対称
^{\prime\prime}20. 対称なし【単原子】原子軌道関数を見るときなどに便利です\dots^{\prime}
^{\prime\prime}21. 対称なし【単原子イオン】原子軌道関数を見るときなどに便利です...^{\prime\prime},
----+----1----+----6----+----3----+----4----+---5----+---6----+---
```

```
----+----1----+----2----+----3----+----4----+----5----+----6----+----7
  if(result==1)execmacro macrodir + "\text{\text{$Y$}}\text{eduDV\text{$Y$}}\text{$a2$}\text{menu, mac";}
 else if(result==2)execmacro macrodir + "\frac{4}{2}eduDV\frac{4}{2}abmenu.mac";
 else if(result==3) execmacro macrodir + "\frac{1}{2}\text{eduDV\frac{1}{2}}\text{ab2menu. mac";
 else if (result==4) execmacro macrodir + "\frac{1}{2}\text{YeduDV\frac{1}{2}}\text{Menu, mac"}
 else if(result==5) execmacro macrodir + "¥¥eduDV¥¥abcmenu. mac"
 else if (result==6) execmacro macrodir + "\frac{1}{2}\text{Y}\text{eduDV\frac{1}{2}\text{Y}}\text{abcdmenu. mac"
 else if(result==7) execmacro macrodir + "\frac{1}{2}\text{Y}\text{eduDV\frac{1}{2}\text{W}}\text{enu. mac}
 else if (result==8) execmacro macrodir + "\frac{2}{4}eduDV\frac{2}{4}c3v13menu.mac
 else if(result==9) execmacro macrodir + "\frac{1}{2}\text{Y}\text{eduDV}\text{V}\text{V}\text{d2h24menu.mac}
 else if (result==10) execmacro macrodir + "\frac{1}{2}\text{YeduDV}\frac{1}{2}\text{W} = 100 execmacro macrodir + "\frac{1}{2}\text{V} = 100 execmacro macrodir + "\frac{1}\text{V} = 100 execmacro macrodir + "\frac{1}{2}\te
 else if(result==11) execmacro macrodir + "\frac{1}{2}\text{Y}\text{eduDV}\text{V}\text{V}\text{d4h14menu.mac}
 else if (result==12) execmacro macrodir + "\frac{1}{2}\text{eduDV\frac{1}{2}\text{d6h66menu.mac}}
 else if (result==13) execmacro macrodir + "\frac{2}{2}\text{YeduDV\frac{2}{2}}\text{td14menu.mac'}
 else if(result==14) execmacro macrodir + "\frac{1}{2}\text{Y} eduDV\frac{1}{2}\text{Y} oh 16\text{menu. mac"
 else if(result==15) execmacro macrodir + "\frac{1}{2} + \frac{1}{2} + \f
 else if (result==16) execmacro macrodir + "\frac{1}{2}\text{FeduDV}\frac{1}{2}\text{Foh 166menu. mac}
 else if (result==17) execmacro macrodir + "\frac{1}{2}\text{FeduDV}\frac{1}{2}\text{mh}\frac{1}{2}\text{o}\text{mh}\text{o}\text{o}\text{menu. mac}\text{o}\text{o}\text{o}\text{mh}\text{o}\text{o}\text{menu. mac}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\text{o}\t
 else if(result==18) execmacro macrodir + "\frac{2}{2}\text{eduDV\frac{2}{2}}\text{ml4menu.mac";
 else if(result==19) execmacro macrodir + "\frac{2}{2}\text{eduDV\frac{2}{2}}\text{ml6menu.mac";
 else if (result==20) execmacro macrodir + "\frac{1}{2}\text{eduDV\frac{1}{2}\text{atommenu.mac"};
 else if(result==21)execmacro macrodir + "\frac{1}{2}\text{eduDV}\frac{1}{2}\text{ionmenu.mac";
 ----+----1-----6------7
      3-6.【c∶¥dvxa¥Macros¥eduDV¥d2h24menu. mac】d2h24 メニュー秀丸エディタマクロ
----+----1----+----2----+----3----+-----5----+----6----+----7 menu "d2h24n (ノンスピン版・全自動実行)...",
 "d2424s (スピン版・全自動実行)...
 ″d2h24 (F01・F25 作成のみ). . .
 if(result==1)execmacro macrodir + "\frac{1}{2}\text{ = duDV\frac{1}{2}}\text{ = duDV\frac{1}{2}}
 else if(result==2) execmacro macrodir + "\frac{1}{2}\text{eduDV\frac{1}{2}}\text{d2h24s.mac"};
 else if(result==3) execmacro macrodir + "\frac{1}{2}\text{eduDV\frac{1}{2}}\text{d2h24. mac";
 ----+----1------6----------7
      3-7. 【c:\dvxa\macquares\macquare duDV\mathbf{d}2h24n.mac】ノンスピン全自動秀丸エディタマクロ
   ----+----1-----2----+----3----+----4----+----5----+----6----+----7
  |loadd|| hidemarudir + "\text{\text{$YDengakuDLL.}} d||"; // 田楽 DLL のロード
  if (!result) {
                                   message "DengakuDLL.dllをロードできませんでした.";
                                   endmacro;
 $path_dvdir = getenv("dvdir");
$\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\f
                                   message "新規フォルダの作成に失敗しました.";
                                   endmacro:
    ----+----1-----2----+----3----+----4----+----5----+----6----+----7
```

```
-+----1-----5-----6-----7
if (!dllfunc("SETCURDIR", $path_dvdir + "\text{YYCALC\text{YY"}} + \text{$dirname})) {
    message "新規フォルダに移動できませんでした.
     endmacro;
の D2H24N. BAT の実行
openfile "F01":
readonlyopenfile "F06Z";
readonlyopenfile "BN8"
readonlyopenfile "I08";
readonlyopenfile "F08P";
readonlyopenfile "F08P_S";
readonlyopenfile "F08E.hlgaps";
readonlyopenfile "F08E";
endmacro;
                      -3---+
```

4. コンパイル

Windows のコマンドプロンプト画面で

C:\forall dvxa\rightarrowsetdvxa.bat[Enter] (C:\forall dvxa\rightarrowsetdvxa[Enter]と打ち込んでも同じ)

C:\forall dvxa>makedv d2h24[Enter]

C:\forall dvxa>makedv d2h24n[Enter]

C:\forall dvxa>makedv d2h24s[Enter]

と打ち込めば、Open Watcom Fortran77 Version 1.9 コンパイラーによるコンパイル作業が終了し、

C:\dvxa\object\d2h24.exe

C:\dvxa\object\d2h24n.exe

C:\dvxa\object\d2h24s.exe

ができあがる.

- 5. 使用方法 (例:エチレン分子の電子状態計算)
- ① "DV-X α 法のための統合支援環境" [4]が構築されている Windows パソコンにて、秀丸エディタを立ち上げる. なお、本学の学生実習用パソコンは起動するたびにハードディスク内容が初期状態に戻るので、秀丸エディタを他用途で使う場合を想定し、DV-X α 法計算支援環境の C:¥dvxa ¥Macros¥SCAT.regを秀丸エディタで読み込む作業は毎回行う必要がある. 秀丸エディタのその他(\underline{O})→設定内容の保存/復元(\underline{U})…で SCAT.reg を読み込むと、教育用分子軌道計算システム eduDV が実行できる状態になる.

②秀丸エディタの上右端のボタン【eduDV…】(図 1)をクリックすると、21 項目のプルダウンメニュー(図 2)が現れる. $\boxed{09. D_{2h}$ 対称【エチレン型分子】 A_2B_4 型分子(エチレンなど)… を選択する.

- 01. D∞h対称【等核二原子分子】A2型分子(H2, O2, N2など)...
- 02. C∞v対称【異核二原子分子】AB型分子(一酸化炭素や塩化水素など)...
- 03 .D∞h対称【直線AB2型分子】B-A-B型分子(二酸化炭素など)...
- 04. D∞h対称【直線A2B2型分子】B-A-A-B型分子(アセチレンなど)...
- 05. C∞v対称【直線ABC型分子】A-B-C型分子(シアン化水素など)...
- 06.C∞v対称【直線ABCD型分子】A-B-C-D型分子(HCNOなど)...
- 07. C2v対称【折れ線AB2型分子】AB2型分子(水や硫化水素など)...
- 08. C3v対称 【三角錐AB3型分子】AB3型分子(アンモニアなど)...

09. D2h対称 【エチレン型分子】A2B4型分子(エチレンなど)...

- 10. D3h対称 【平面正三角形型分子】AB3型分子(三フッ化ホウ素など)...
- 11. D4h対称 【平面正四角形型分子】AB4型錯イオン([PtCl4]2-など)...
- 12. D6h対称 【平面正六角形型分子】A6B6型分子(ベンゼンなど)...
- 13. Td対称 【正四面体型分子】AB4型分子(メタンや四塩化炭素など)...
- 14. Ob対称 【正八面体型分子】AB6型分子(六フッ化硫量など)...
- 15. Td対称 【正四面体型分子】[A(BC)4]型錯体([Ni(CO)4]など)...
- 16. Oh対称 【正八面体型分子】[A(BC)6]型錯体([Cr(CO)6]など)...
- 17. D2h対称 【正八面体型】[M(H2O)6]n+アクア錯イオン...
- 18. Td対称 【正四面体型】[M(L)4]n+ or [M(L)4]n- 錯イオン...
- 19. Oh対称 【正八面体型】[M(L)6]n+ or [M(L)6]n- 錯イオン...
- 20.対称なし【単原子】原子軌道関数を見るときなどに便利です...
- 21.対称なし【単原子イオン】原子軌道関数を見るときなどに便利です...

図2. eduDV のプルダウンメニュー

③すると図3のようにプロダウンメニューでスピン分極は考慮しない $DV-X\alpha$ 法分子軌道計算 (ノンスピン版 SCAT) を全自動で実行するのか、スピン分極を考慮した $DV-X\alpha$ 法分子軌道計算 (スピン版 SCAT)

を全自動で実行するのか、それとも $DV-X\alpha$ 法分子軌道計算は実行せずに、その入力ファイル(座標と原子番号が書かれた入力ファイル F01 と、対称軌道(実数型球面調和関数の線形結合式)が書かれた入力ファイル F25)を準備するだけの作業を行うのかを訊いてくる。ここでは

d2h24n(ノンスピン版・全自動実行)... を選択する.

d2h24n (ノンスピン版・全自動実行)... d2424s (スピン版・全自動実行)... d2h24 (F01・F25作成のみ)...

図3. d2h24 メニュー

④会話式で原子番号や原子間距離・角度を以下のように入力する(図 4). なおエチレン分子の場合,炭素(C)の原子番号は 6,水素(H)の原子番号は 1,C-C 間の原子間距離は 1.339 Å, C-H 間の原子間距離は 1.087 Å,の H-C-H の原子間角度(\angle HCH)は 121.3° である[17].

```
*** Program D2h24(symOrb version)

*** for A2B4 type molecule (e. g. C2H4)

Input Atomic Number(Z) (1 < Z < 94) of Central Atom A, Z = ? 6

Input Atomic Number(Z) (1 < Z < 94) of Terminal Atom B, Z = ? 1

Input Distance(angstrom), A - A = ? 1.339

Input Distance(angstrom), A - B = ? 1.087

Input Angle(degree)( 0 deg.< Angle < 180 deg.), B-A-B = ? 121.3
```

図4. プログラム d2h24n 実行画面

⑤DV- $X\alpha$ 法分子軌道計算(ノンスピン版 SCAT)が実行され、マリケン・ポピュレーション・アナリシスを使ったセルフ・コンシステントな方法(セルフ・コンシステント・チャージ法)で各原子軌道の電子数がセルフ・コンシステントになるまで繰り返し計算が行われ(この場合は 26 サイクルで収束する)、各分子軌道のエネルギー固有値表(f08e)が秀丸エディタ画面に出力される(表 1).

⋉ f01 ★ f08p ★ F08P_S ★ F08Ehlgaps ★ f08e 1,,,,,|20,,,,,,,,,|30,,,,,,,,,|40,,,,,,,,|50,,,,,,,,,|60,,,,,, \downarrow 2 3 4 *** M.O. EIGENVALUE ↓ 5 6 (RY) (HR) $(EV)\downarrow$ 7 \downarrow 8 -260.11814 -19.12137 -9.56069 2.000004 1 1 ag 9 1 b1u -19.11995 -9.55997 -260.09879 2.00000110 3 2 ag -1.14682 -0.57341-15.60085 2.0000044 -0.40994 -11.15323 11 2 b1u -0.81988 2.000004 5 -8.91172 12 1 b2u -0.65510 -0.32755 2.000004 13 6 3 ag -0.49652 -0.24826 -6.75442 2.000004 7 14 1 b3g -0.42771 -0.21386 -5.81840 2.000004 15 8 -2.95482 1 b3u -0.21721-0.10860 2.00000116 9 0.31794 0.15897 4.32505 0.0000041 b2g 17 10 2 b2u 0.88390 0.44195 12.02418 0.00000118 11 0.88691 0.44345 12.06507 0.0000014 ag 19 12 3 b1u 0.92814 0.46407 12.62605 0.00000420 13 2 b3g 1.36072 0.68036 18.51062 0.000004 21 0.72133 19.62515 14 4 b1u 1.44265 0.000001

表1. エチレンの分子軌道エネルギー固有値表

表 1 では、各分子軌道のエネルギー固有値が左より、リュードベリ(rydberg、Ry)、ハートリー(hartree、hr)、エレクトロンボルト(electron volt、eV)で示されている。右端の数字は、各分子軌道における占有電子数である。すでに秀丸エディタ画面に出力されているポピュレーション解析プログラム(POPANL)の出力(f08p)(表 2)を見れば、各分子軌道がどの原子(炭素または水素)のどの原子軌道(C-1s, C-2s, C-2p, H-1s)から構成されているかを読みとることができる。

表2. エチレンの分子軌道のポピュレーション解析結果

```
MULLIKEN POPULATION ANALYSIS OF ag FOR
    1)
             -260.1181 EV
 (11s) 0.9999 (12s)-0.0001 (12p) 0.0001 (21s) 0.0001
E( 2) -15.6008 EV
(1 1s) 0.0000 (1 2s) 0.7117 (1 2p) 0.0636 (2 1s) 0.2247
E( 3) -6.7544 EV
E( 2)
E(3)
 (11s) 0.0000 (12s) 0.0006 (12p) 0.7311 (21s) 0.2683
 E(4) 12.0651 EV

(1 1s) 0.0002 (1 2s) 0.2878 (1 2p) 0.2052 (2 1s) 0.5069

CHRG OF ag BLOCK

NO. OF ELECTRONS IN I ORBITAL OF X ATOM
 (1 1s 0) 1.9997 (1 2s 0) 1.4245 (1 2p 0) 1.5897 (3 1s 0) 0.9862 (
CHRG(X ATOM, Y ATOM)
           4.7037
(1)
(3)
           0.6202
                        0.6760
    MULLIKEN POPULATION ANALYSIS OF b1g FOR
                                                                    LEVEL
    CHRG OF b1g BLOCK
               NO. OF ELECTRONS IN I ORBITAL OF X ATOM
                    CHRG(X ATOM, Y ATOM)
    MULLIKEN POPULATION ANALYSIS OF b2g FOR
                4.3250 \; \overline{\mathrm{EV}}
E(1)
 (12p) 1.0000
    CHRG OF b2g BLOCK
               NO. OF ELECTRONS IN I ORBITAL OF X ATOM
 (12p 1) 0.0000
                    CHRG(X ATOM, Y ATOM)
    MULLIKEN POPULATION ANALYSIS OF b3g FOR
E( 1) -5.8184 EV
(1 2p) 0.3918 (2 1s) 0.6082 (
E( 2) 18 5106 EV
E( 1)
 E( 2) 18.5106 EV
(12p) 0.6082 (21s) 0.3918 (
CHRG OF b3g BLOCK
               NO. OF ELECTRONS IN I ORBITAL OF X ATOM
 ( 1 2p-1) 0.7836 ( 3 1s 0) 1.2164 ( CHRG(X ATOM, Y ATOM)
(1)
           0.4232
(3)
           0.7209
                        0.8559
    \label{eq:mulliken} \mbox{MULLIKEN POPULATION ANALYSIS OF} \quad \mbox{au} \quad \mbox{FOR}
    CHRG OF au BLOCK NO. OF ELECTRONS IN I ORBITAL OF X ATOM
                    CHRG(X ATOM, Y ATOM)
                                                       MULLIKEN POPULATION ANALYSIS OF blu FOR
                                                                    LEVEL
    1)
             -260.0988 EV
 (1 1s) 0.9998 (1 2s) 0.0001 (1 2p) 0.0000 (2 1s) 0.0001
 (1 1s) 0.0000 (1 2s) 0.0001 (1 2p) 0.0000 (2 1s) 0.0001

E(2) -11.1532 EV

(1 1s) 0.0000 (1 2s) 0.3773 (1 2p) 0.1758 (2 1s) 0.4469

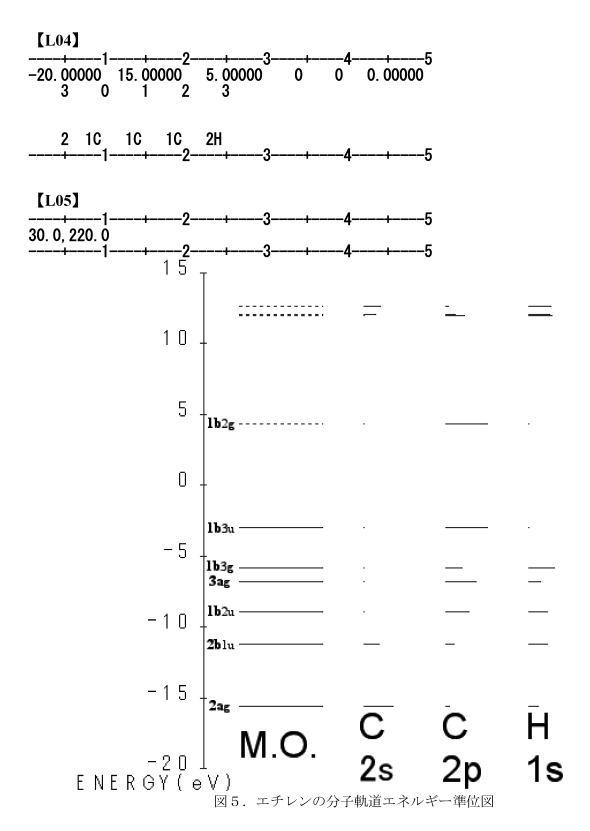
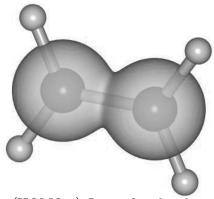
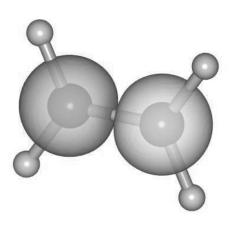

E(3) 12.6260 EV
E(2)
E(3)
 (1 1s) 0.0002 (1 2s) 0.4028 (1 2p) 0.0580 (2 1s) 0.5390
               19.6251 EV
 (1 1s) 0.0001 (1 2s) 0.2198 (1 2p) 0.7662 (2 1s) 0.0140
CHRG OF b1u BLOCK
               NO. OF ELECTRONS IN I ORBITAL OF X ATOM
(1 1s 0) 1.9995 (1 2s 0) 0.7548 (1 2p 0) 0.3517 (3 1s 0) 0.8940 (
CHRG(X ATOM, Y ATOM)
(1)
           2.7100
(3)
           0.7919
                         0.4981
```

表1と表2を読みとった結果を分かりやすいように整理しなおすと、表3のようになる.

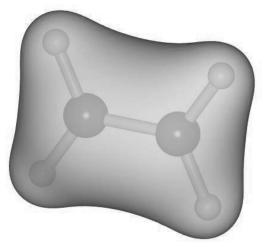

表3. エチレンの分子軌道計算結果

M.O.	eV	電子数	C-1s	C-2s	C-2p	H-1s
4b _{1u} (LUMO+5)	19.625	0	0.01%	21.98%	76.62%	1.40%
$2\mathrm{b}_{3\mathrm{g}}$ (LUMO+4)	18.511	0	_	_	60.82%	39.18%
3b _{1u} (LUMO+3)	12.626	0	0.02%	40.28%	5.80%	53.90%
4a _g (LUMO+2)	12.065	0	0.02%	28.78%	20.52%	50.69%
2b _{2u} (LUMO+1)	12.024	0	_	-	43.37%	56.63%
$1b_{2g}$ (LUMO)	4.325	0	_	_	100.00%	_
1b _{3u} (HOMO)	-2.955	2	-	-	100.00%	_
1b _{3g} (HOMO-1)	-5.818	2	_	_	39.18%	60.82%
3a _g (HOMO-2)	-6.754	2	0.00%	0.06%	73.11%	26.83
1b _{2u} (HOMO-3)	-8.912	2	_	_	56.63%	43.37%
2b _{1u} (HOMO-4)	-11.153	2	0.00%	37.73%	17.58%	44.69%
2a _g (HOMO-5)	-15.601	2	0.00%	71.17%	6.36%	22.47%
1b _{1u} (HOMO-6)	-260.099	2	99.98%	0.01%	0.00%	0.01%
1a _g (HOMO-7)	-260.118	2	100.00%	0.00%	0.00%	0.00%

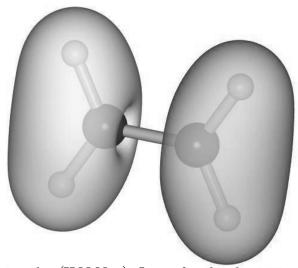
⑥表 3 の内容を直感的に理解するために、それぞれの分子軌道の成分を図示するプログラム LVLSHM を実行する。eduDV では LVLSHM の入力ファイル L04、L05 が自動的に準備されて、LVLSHM が実行されているので、秀丸エディタの【DVPLOT】ボタンをクリックして L07 を選択するだけで図を表示することができる。ここでは以下のように L04、L05 を編集してから改めて【LVLSHM】ボタンをクリックして LVLSHM を再実行し、図を作成した(図 5)。



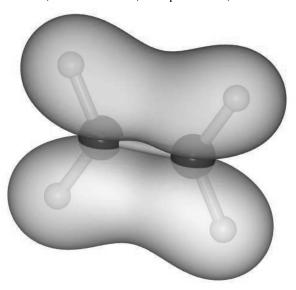
⑦eduDVでは、全分子軌道(波動関数)および電子密度、静電ポテンシャルについて、VESTAで読めるデータファイルを作成するプログラム(CONTRDALL)が全自動で実行されている。秀丸エディタのF01 タブをつまんで(クリックして)をアクティブにし、【VESTA】ボタンをクリックすれば VESTA が立ち上がる。その後の操作の詳細についてはマニュアル[7]を参照されたし。全分子軌道の等値表面図(図6~図19)、静電ポテンシャルマップ(図20)を示す。



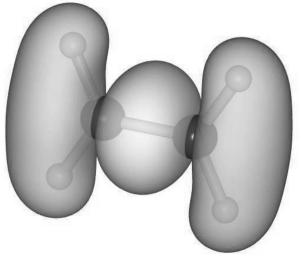
 \boxtimes 6 . 1ag (HOMO-7), Isosurface level: $-0.005a_0^{-3/2}$ C-1s 100.00%, C-2s 0.00%, C-2p 0.00%, H-1s 0.00%



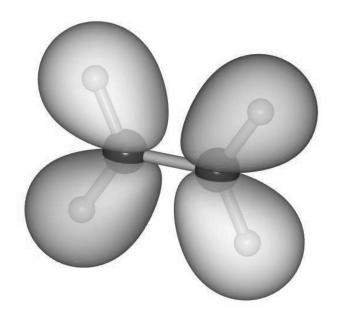
 \boxtimes 7 . 1b1u (HOMO-6), Isosurface level: $\pm 0.005a_0^{\cdot 3/2}$ C-1s 99.98%, C-2s 0.01%, C-2p 0.00%, H-1s 0.01%



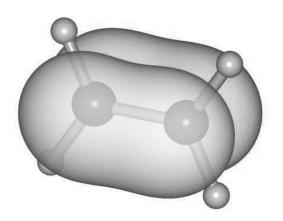
 \boxtimes 8 . 2ag (HOMO-5) , Isosurface level: $-0.05a_0^{\cdot 3/2}$ C–1s 0.00%, C–2s 71.17%, C–2p 6.36%, H–1s 22.47%


A Day

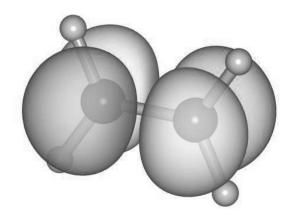
 \boxtimes 9 . $2b_{1u}$ (HOMO-4) , Isosurface level: $\pm 0.05a0^{\cdot 3/2}$ C–1s 0.00%, C–2s 37.73%, C–2p 17.58%, H–1s 44.69%


y A

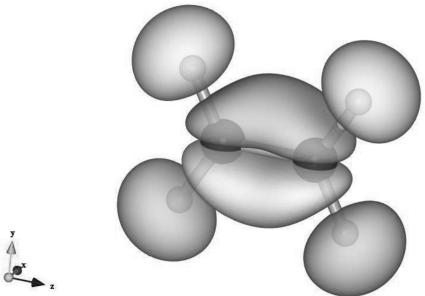
 $\boxtimes 1~0$. 1b_2u (HOMO-3) , Isosurface level: $\pm 0.05 a_0^{\cdot 3/2}$ C=2p 56.63%, H=1s 43.37%



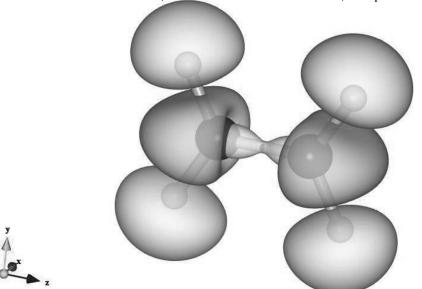
 \boxtimes 1 1 . 3ag (HOMO-2) , Isosurface level: $\pm 0.05 a_0^{\cdot 3/2}$ C–1s 0.00%, C–2s 0.06%, C–2p 73.11%, H–1s 26.83%

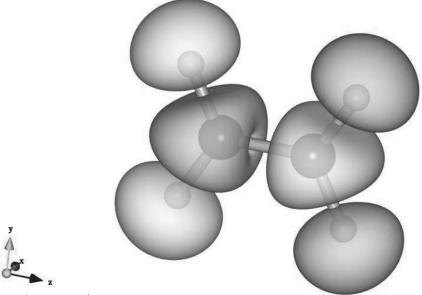

y x

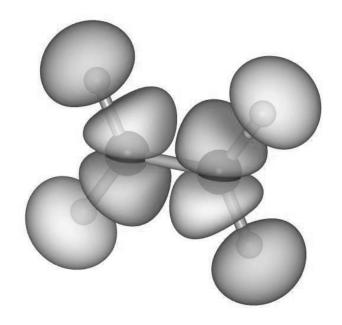
 \boxtimes 1 $\,2$. 1b3g (HOMO-1) , Isosurface level: $\pm 0.05a_0^{-3/2}$ C=2p 39.18%, H=1s 60.82%



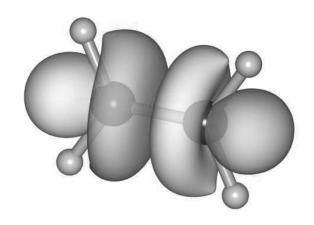
 \boxtimes 1 3 . 1b3u (HOMO) , Isosurface level: $\pm 0.05 a_0^{\cdot 3/2}$ C=2p 100.00%




 \boxtimes 1 4 . 1b2g (LUMO) , Isosurface level: $\pm 0.05 a_0^{\cdot 3/2}$ C=2p 100.00%


 \boxtimes 1 5. 2b_{2u} (LUMO+1), Isosurface level: ±0.05a₀·3/2, C-2p 43.37%, H-1s 56.63%

 $\boxtimes 1\ 6\ .\ 4a_g\ (LUMO+2)\ ,\ Isosurface\ level: \pm 0.05a_0\cdot ^{3/2},\ C-1s\ 0.02\%,\ C-2s\ 28.78\%,\ C-2p\ 20.52\%,\ H-1s\ 50.69\%$



 $\boxtimes 1\ 7\ .\ 3b_{1u}\ (LUMO+3)\ ,\ Isosurface\ level: \pm 0.05a_0^{\cdot 3/2},\ C-1s\ 0.02\%,\ C-2s\ 40.28\%,\ C-2p\ 5.80\%,\ H-1s\ 53.90\%$

y A

 \boxtimes 1 8 . 2b3g (LUMO+4) , Isosurface level: $\pm 0.05 a_0^{\cdot 3/2}$ C=2p 60.82%, H=1s 39.18%

 \boxtimes 1 9 . 4b1u (LUMO+5) , Isosurface level: $\pm 0.05a_0^{\cdot 3/2}$ C=1s 0.01%, C=2s 21.98%, C=2p 76.62%, H=1s 1.40%

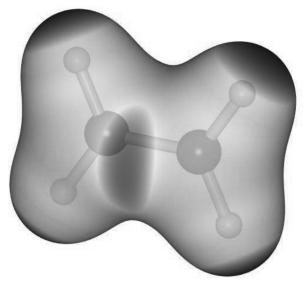


図 2 0. 静電ポテンシャルマップ(電子密度の isosurface level: 0.02 ao³)

6. まとめ

エチレン型 A_2B_4 型 $(D_{2h}$ 対称)分子が計算できるプログラム d_2h_2 4シリーズ (d_2h_2) 4n, d_2h_2 4s, d_2h_2 2h) を開発し、教育用分子軌道計算システム eduDV に組み込むことに成功した。エチレンはもとより、この 形の分子であれば(原子間距離と角度の実験データは調べる必要がある)他の分子(例えば酸化剤とし てロケットエンジンの推進剤として利用されている四酸化二窒素 N2O4や, 繊維や金属の洗浄に用いられ ているテトラクロロエチレン C_2Cl_4 など) でもエチレンと同じ手順で電子状態を計算することができる.

炭素-炭素間の多種多様な結合パターンの代表例として,eduDV では共役系 1.5 重結合のベンゼン $(C_6H_6, D_{6h}$ 対称), 二重結合のエチレン $(C_2H_4, D_{2h}$ 対称), 三重結合のアセチレン $(C_2H_2, D_{\infty h}$ 対称)を取り 扱えるようになった. 残る単結合のエタン(C_2H_6 , D_{3d} 対称)が計算できるプログラム d3d26 を前述のよう に来年度開発できれば、炭素 - 炭素間の多種多様な結合の学習が量子化学の立場からできるようになる.

参考文献・URL

- [1] 坂根弦太, "DV-Xα分子軌道計算プログラムと三次元可視化システム VENUS の大学基礎化学教育での活用", 日本教育情報学会第 22 回年会 (岡山) 論文集, 2D3, 198-199 (2006).
 [2] 坂根弦太, 小和田善之, "教育用 F01・F25 準備システム eduDV と錯体計算用 F05 準備システム
- MAKEF05SCFS", Bulletin of the Society for Discrete Variational $X\alpha$, **20**(1&2), 247-251, (2007).
- [3] 門馬綱一、泉富士夫、坂根弦太、"3次元可視化システム VESTA と DV-Xα法計算支援環境の開発"、 Bulletin of the Society for Discrete Variational $X\alpha$, 20(1&2), 252-253, (2007).
- [4] Genta Sakane, Koichi Momma, Fujio Izumi, "Building of an Integrated Assistance Environment for the DV-Xα Method", 7th Award for Distinguished Contributions, Memorial Award Lecture, Bulletin of the Society for Discrete Variational Xα, 21(1&2), 13·17, (2008).
- [5] 坂根弦太, "教育用分子軌道計算システム eduDV の開発", 岡山理科大学情報処理センター研究報告, **31**, 9-17, (2010).
- [6] 坂根弦太、"化学が大好きな高校生・大学生のみなさんへ、分子軌道計算を今すぐ始めよう!、教科書 に出てくる原子、分子、錯体の楽しい電子状態計算~パソコンで簡単に始められる周期表の全元素を 対象とした分子軌道計算~", http://www.chem.ous.ac.jp/%7Egsakane/fun/index.html#edudv
- [7] 坂根弦太, "はじめての DV-Xα法分子軌道計算支援環境-タブエディタ(秀丸エディタ)上で使う DV-Xα法計算支援環境利用の手引き-", 1·146, (2010), http://www.chem.ous.ac.jp/%7Egsakane/HidemaruDV/HidemaruDV.pdf
- [8] 坂根弦太, "人材育成のための授業紹介, 化学, 教育用分子軌道計算システム eduDV を利用した電子 についての基礎化学教育", JUCE Journal (大学教育と情報), 18 (4), 15 (2010), http://www.juce.jp/LINK/journal/1002/03_03.html
- [9] Hirohiko Adachi, Masaru Tsukada, Chikatoshi Satoko, "Discrete variational Χα cluster calculations. I. Application to metal clusters", Journal of the Physical Society of Japan, **45**(3), 875-883 (1978).
- [10] 足立裕彦監修, 小和田善之, 田中功, 中松博英, 水野正隆共著, "はじめての電子状態計算 ■DV-Xα分子軌道計算への入門■", 三共出版, 1-190, (1998).
- [11] 小和田善之, 山田善信, "はじめての電子状態計算■DV-Xα分子軌道計算への入門■", ダウンロード・ページ, 次世代版 dvscat プログラム, dvxa_v1_04, http://chem.sci.hyogo-u.ac.jp/hajimete/download.html
- [12] 有限会社サイトー企画, "秀まるおのホームページ", ソフトウェア, 秀丸エディタ, http://hide.maruo.co.jp/software/hidemaru.html
- [13] 泉富士夫, "泉 富士夫の粉末回折情報館", 3D Visualization System VENUS, 11.1.2 The assistance environment for the DV-Xa method, http://homepage.mac.com/fujioizumi/visualization/VENUS.html#assistance environment
- [14] Koichi Momma, Fujio Izumi, "VESTA: a three-dimensional visualization system for electronic and structural analysis", Journal of Applied Crystallography, 41(3), 653-658 (2008), http://dx.doi.org/10.1107/S0021889808012016
- [15] 門馬綱一, "JP-Mineral", Software, VENUS system, VESTA(Visualization for Electronic and Structural Analysis, http://www.geocities.jp/kmo_mma/crystal/jp/vesta.html
- [16] Open Watcom, version 1.9, http://www.openwatcom.org/
- [17] 日本化学会編纂, 化学便覧基礎編 改訂 5 版, 第 II 巻, 16.1 分子構造, 表 16.3 有機化合物の 構造定数, p. II·802, 丸善, 2004年, 化学書資料館, https://www.chem-reference.com/