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Gauss codes and Seifert systems of oriented link diagrams
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For a link diagram, a Gauss code is one of representations of the diagram using crossing labels, and the Seifert
system is a plane figure which gives a geometrical characteristic of the link. The number of circles in the system gives
an effective way to determine the braid index of the link. In this article, we introduce another metric to investigate the
braid index of a link, which is computed in a purely combinatorial manner from the Gauss code of a link diagram, and
show that our metric is equally effective as the number of circles in the Seifert system of the diagram.
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1. Introduction

In [4], we showed that the braid index of a link can be determined by counting numbers of strictly increasing
maximal subsequences of sequences obtained from Gauss codes of its diagrams, and conjectured that, for each
link diagram D, the minimal number i(D) of such subsequences coincides with the number s(D) of Seifert
circles.

This article is devoted to give an affirmative answer to this conjecture. That is, we show that i(D) is always
equal to s(D).

Further, we provide an algorithm to obtain a labeling of crossings of D which gives i(D). The computational
quantity of our algorithm is O(n) in both time and space, with n the number of crossings of D.

Since we need to visit all crossings of D to count the number of Seifert circles of D, we can conclude that
computing i(D) is equally effective as computing s(D) in the view point of computational quantity.

2. Seifert systems and braid indices
Let L be an oriented link, and D be a diagram of L. By applying the following deformation
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to all the crossings of D, we obtain a set of mutually disjoint oriented circles and lines with signs connecting
those circles. This system is called Seifert system of D, each circle in the system a Seifert circle, and each line
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connecting two Seifert circles a connection. The connections of S are in one-to-one correspondence with the
crossings of D. So we identify a connection of S with the corresponding crossing of D throughout this paper.
We denote by s(D) the number of Seifert circles of the diagram D after [5].

In [5], it is proved that D can be deformed into the closure of a braid with s(D) strands, and that, as an
immediate consequence of the result, the braid index of the link L equals the minimum of s(D)’s with D
varying all the diagrams of L.

Deformation of D into a closed braid is performed as repetition of a move of a Seifert circle. Each move of a
Seifert circle may or may not generate new crossings. If new crossings are generated, they are necessarily of the
form

(2.2)

That is, two new crossings ¢, and c3 per one original crossing c, are generated in such a way that the
original crossings is placed between new ones along the moved circle.

3. Gauss codes and braid indices

We keep the same notations L and D as in the previous section.

Let Ly, Ly, be the connected components of L, D,,--, D, the respective images in D, c(D) the set of
all crossings of D, n(D) the number of elements of c(D),and f: c(D) 3¢ — f(c) € {1,--,n(D)} aone-
to-one mapping.

We choose apoint P; onastrand of D; different from any crossing foreach 1 <i < n. We start from P; and
walk through D, after the given orientation until we arrive at P; again, and repeat such walks on all D,, -, D,y,.

For each crossing ¢, we pick up the positive integer f(c) when we pass the crossing ¢ along the over strand,
or the negative integer -f(c) when we pass ¢ along the under strand while the walk. For each D;, by arranging
the integers for all crossings after the walk, we get a sequence of integers. The list of these sequences for D, -+, D,
is called a Gauss code of D.

We consider the list of the sequences of positive integers obtained by replacing all integers in the Gauss code
with their absolute values. Each sequence splits into maximal strictly increasing subsequences. Let
i(D; f;Py,--, By) be the sum of the numbers of theses subsequences, i(D) be the minimum of i(D;f;Py, -, B,)
for all mappings f and all choices of starting points Py, -, By, and i(L) be the minimum of i(D)’s for all
diagrams D’sof L.

A Seifert circle C of D is divided into one or more oriented arcs by connections. Let a be one of such arcs,
¢ the crossing corresponding to the start point of a, and ¢’ the crossing corresponding to the end point of a. We
call a increasing if f(c) < f(c’).

Let b(L) be the braid index of L. In [4], by counting non-increasing arcs in each Seifert circle, we showed
the following theorem.
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Theorem 3.1. i(L) equals b(L) for any oriented link L.

4. The minimal number of maximal increasing sequences of a Gauss code

In [4], adding to the result described in the previous section, we reported about our computations of i(D)’s for
diagrams D’s in the well-known table of [1]: they are all the same as s(D)’s. And further we conjectured that this
result will be extended to an arbitrary oriented link diagram.

We now show that the answer to this conjecture is affirmative.

For any oriented link diagram D, as described in §2, by applying moves of the form (2.2) to the Seifert system
S of D, we obtain a Seifert system S’ in which all Seifert circles share a single point O as their center and have
the same orientation around 0. We arrange the connections in S’ in such a way that any two connections are
placed on two different half lines starting from O.

We choose an arbitrary crossing ¢, of D, and consider a half line including the connection Co inS’ and
starting from O.

We rotate this half line around O until it meets the starting connection again, and assign the integers 1,2,... in
order to all the crossings after this rotation. We denote the assigned integer by f(c) for each crossing ¢ of D’.
Obviously each circle in S” has one and only one non-increasing arc.

We consider the inverse deformation from D’ to D, and show below that the number of non-increasing arcs
does not change in each step of this deformation.

We denote by C;, Cp,, and Cy, the inner circle, the moved circle, and the outer circle in each inverse move of
(2.2), repectively.

For notational convenience, we denote by C';, and C', the circles C,, and C, after the inverse move
respectively:

4.1)
In the move, crossings ¢, and c; disappear, and c, is newly connectedto C ‘0. Hence the connections along
C; do not change, and those along C’,, simply reduce. And so it is clear that each of these circles still has one
and only one non-increasing arc.
We investigate the circle C’,.

In case f(c;) < f(c3), the non-increasing arc of C,, must be included in the arc from c3 to ¢y, Since the
number of non-increasing arcs of C,, is 1, it must hold that

f(e)) < f(e2) < f(cs) 42)
In case f(c;) > f(c3), since the number of non-increasing arcs of o is 1, it holds that

f(c3) < f(c) < f(cy) for any connection ¢ along C, 4.3)
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If (4.8) holds, the arc from c¢” to the first member of A is the only non-increasing arc of C’,.

If (4.9) holds, the arc from the last member of A to ¢ is the only non-increasing arc of C’,,.

By similar arguments, we see that the number of non-increasing arcs of C’ o is 1 also in the case where just
oneof ¢ and ¢’ disappears after the move.

Thus we have the following lemma.

Lemma 4.1. For any oriented link diagram D and any crossing c, of D, there exists a numbering of crossings
of D such that each Seifert circle has one and only one non-increasing arc, and that the number assigned to c,
is the minimum.

If starting points Py,--,F,, are taken in such a way that the first crossing of D; is minimal among the possible
choices with respect to f foreach1 < i < m, iD; f; Py,++,By) is equal to the number of all non-increasing
arcs. Hence we have the following theorem as an immediate consequence of the above lemma.

Theorem 4.2. i(D) equals s(D) for any oriented link diagram D.

S. An algorithm to minimize the number of maximal increasing subsequences of a link diagram

Let D be a link diagram of an oriented link as in the previous sections.

Choose a crossing ¢, of D, and a Seifert circle C, of D to which Cg connects.

We define an order of all crossings of D inductively, with respect to which ¢, is the minimum.

First, let cy,-,c, be the rest of the crossings connecting to C,, where indices 0,1, ---,p are assigned after the
orientation of C,. We define the order of these crossingsas ¢; < ¢; ifand only if i < j.

Assume that we have defined orders of all crossings connecting to Seifert circles Co,+++,Cy, and that there is a
crossing connecting to one of these circles and to a Seifert circle different from any of Co, -++,C,.

Let ¢’ be the minimal one among such crossings, and Cq+1 the Seifert circle other than C,, +++,Cq, to which
¢’ connects. We define an order of the crossings connecting to C,4, with respect to which ¢’ is the minimum
among the crossings, by the same manner as for C,.

There may exist crossings ¢’y < ¢’, connectingto Cq+1 suchthat each of them connects to one of Cj, +,Cq.
However, thanks to Lemma 4.1, the new order of these crossings does not conflict with the old one.

After completing the above process, we can define a mapping f of c(D)to {1, -+, n(D)} in such a way that
fO)< f(he c < ¢

This process can be easily coded with any programing language which supports one dimensional arrays. A
sample program is available at [3]. In this program, three one-dimensional arrays are used. The first one represents
the link diagram D, the second one is used as a first-in-last-out buffer to keep the crossings to be processed, and
the last one expresses the avobe mentioned order of the crossings.

Since the number of members of these arrays are proportional to n = n(D) as seen from the program, the
computational quantity in space is O(n). Further each crossing is processed within a constant time, so the
computational quantity in time is also O(n).
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