アルミニウム合金の光輝性と機械的性質に及ぼす 無電解 Ni-P めっきの影響に関する研究

2015

岡山理科大学大学院 工学研究科 システム科学専攻

永田教人

| 目 次 |
|-----|
|-----|

| 第 1 章 序 論1                           |
|--------------------------------------|
| 1-1 本研究の背景1                          |
| 1-2 表面改質を目的とする研究開発の課題 2              |
| 1-3 本研究の目的                           |
| 1-4 本 論 文 の 構 成 3                    |
| 参 考 文 献 6                            |
| 図 表                                  |
|                                      |
| 第 2 章 アルミニウム 鋳 造 合 金 へ の 光 輝 性 付 与 に |
| 及ぼす各種表面処理の影響13                       |
| 2-1 緒言13                             |
| 2-2 実験方法14                           |
| 2-2-1 試料調整と表面処理条件14                  |

| 2 - | - 3   | 実     | 験 | 結  | 果 | お | よ | び | 考 | 察 | • |   |   |      | <br>• | <br>• • |  | <br>• | <br> | • | <br> | • | <br>14 |
|-----|-------|-------|---|----|---|---|---|---|---|---|---|---|---|------|-------|---------|--|-------|------|---|------|---|--------|
|     | 2 - 3 | 3 - 1 | バ | 、フ | 研 | 磨 | に | よ | る | 光 | 輝 | 性 | - | <br> |       |         |  | <br>  | <br> |   |      |   | <br>14 |

| 2 - 3 - 2 | 光 輝 | 性 | にり | 及 ぼ | す | 化 | 学 | 研 | 磨 | お | よ | び | 電 | 解 | 研 | 磨 | の | 影 | 響  |
|-----------|-----|---|----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
|           |     |   |    |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 |

2-3-3 光輝性に及ぼす陽極酸化処理の影響 ......17

 2-4 結言
 18

 参考文献
 19

 図表
 20

| 第 | 3   | 章     | ア     | ル     | Ĩ   | Ξ   | ウ  | Д   | 鋳   | 送   | 56  | <b>}</b> | 金     | $\sim$ | の       | 光   | 輝   | 性   | 付    | 与     | に  |
|---|-----|-------|-------|-------|-----|-----|----|-----|-----|-----|-----|----------|-------|--------|---------|-----|-----|-----|------|-------|----|
|   |     |       | 及     | ぼ     | す   | 無   | 電  | 解   | Ν   | [i- | P   | め        | っ     | き      | T,      | )景  | 乡辎  | 坚.  |      | •••   | 36 |
| 3 | - 1 | 輸     | 送柞    | 幾器    | 司   | 」け  | 鋳  | 造   | 用   | А   | 1 - | M g      | g - Z | n 🗄    | 系(      | 合   | 金の  | り 亜 | 三鉛   | 置     | 換  |
|   |     | 皮肌    | 莫 形   | 成     | と   | 無   | 電  | 解   | N i | - P | Ø   |          | ,き    | 皮      | 〕膜      | Į の | 密   | 着   | 性    |       | 36 |
|   | 3 - | 1 - 1 | 緒     | 言     |     | ••• |    |     |     |     |     | •••      |       | • • •  | •••     |     |     |     |      |       | 36 |
|   | 3 - | 1 - 2 | 実     | 験〕    | 方注  | 去 . |    | ••• |     |     |     | •••      | •••   | •••    | • • • • |     |     |     |      |       | 37 |
|   |     |       | 3 - 1 | - 2 - | - 1 | 試   | 料  | 作   | 製   | 条   | 件   | お        | よ     | び      | 熱       | 処   | 理   | 条亻  | 牛.   | •••   | 38 |
|   |     |       | 3 - 1 | - 2 - | - 2 | 前   | 処  | 理   | お   | よ   | び   | 亜        | 鉛     | 置      | 換       | 処   | 理   |     | •••• | •••   | 38 |
|   | 3 - | 1 - 3 | 結     | 果は    | l d | こび  | 、考 | 察   | ••  |     |     | • • •    | •••   | • • •  | •••     |     |     | ••• |      | •••   | 39 |
|   |     |       | 3 - 1 | - 3 - | - 1 | め   | つ  | き   | 皮丿  | 膜   | の   | 密        | 着     | 性      |         |     | ••• |     |      | •••   | 39 |
|   |     |       | 3 - 1 | - 3 - | - 2 | 表   | 面  | •   | 断   | 面   | 観   | 察        | 結     | 果      |         |     | ••• |     |      | •••   | 40 |
|   | 3 - | 1-4   | 結     | 言     |     | ••• |    |     |     |     |     | • • •    | •••   | •••    | • • • • |     |     |     |      | • • • | 41 |
|   | 参   | 考了    | 文 献   |       |     | ••• |    |     |     |     |     |          |       | •••    | •••     |     |     |     |      |       | 42 |
|   | 义   | 表     |       |       |     | ••• |    |     |     |     |     |          |       | • • •  |         |     |     |     |      |       | 43 |

| 3-2 Al-Mg-Zn 合 金 お よ び AC4CH 合 金 鋳 物 へ の 無 電 | 解  |
|----------------------------------------------|----|
| Ni-P めっきに対する金属組織の影響                          | 50 |
| 3-2-1 緒言                                     | 50 |
| 3-2-2 実験方法                                   | 51 |
| 3-2-3 結果および考察                                | 51 |
| 3-2-3-1 めっき前処理による表面形態変化                      |    |
|                                              | 51 |
| 3-2-3-2 亜鉛置換処理における亜鉛の析出                      | 状  |
| 能                                            | 52 |
| 3-2-3-3 無電解 Ni-P めっきと光輝性                     |    |
|                                              | 53 |
| 3-2-4 結言                                     | 54 |
| 参考文献                                         | 56 |
| 図 表                                          | 57 |
| 3-3 アルミニウム合金への亜鉛置換・無電解 Ni-P め                | つ  |
| きに対する合金元素と水素ガス発生の影響                          | 70 |
| 3-3-1 緒言                                     | 70 |
| 3-3-2 実験方法                                   | 70 |
| 3-3-2-1 試料作製および熱処理条件                         | 70 |
| 3-3-2-2 前処理および亜鉛置換処理                         | 71 |
| 3-3-3 結果および考察                                | 71 |

| 3-3-3-1 表面 · 断面観察結果                            | 72  |
|------------------------------------------------|-----|
| 3-3-3-2 めっき皮膜の密着性と水素ガスの影響                      | 響   |
| · · · · · · · · · · · · · · · · · · ·          | 72  |
| 3-3-4 結言                                       | 74  |
| 参考文献                                           | 75  |
| 図 表                                            | 76  |
| 第 4 章 Al-Si 合 金 の 機 械 的 性 質 に 及 ぼ す 無 電 解      | 7   |
| Ni-P めっきの影響                                    | 80  |
| 4-1 Al-1.2%Si 合 金 の 機 械 的 性 質 に 及 ぼ す 無 電 解 Ni | - P |
| めっきの影響                                         | 80  |
| 4-1-1 緒 言                                      | 80  |
| 4-1-2 実験方法                                     | 81  |
| 4-1-2-1 試料作製および熱処理・めっき処理                       |     |
| 条件                                             | 81  |
| 4-1-2-2 実験方法                                   | 81  |
| 4-1-3 結果および考察                                  | 82  |
| 4-1-3-1 熱処理後の表面組織                              | 82  |
| 4-1-3-2 硬さおよび引張り特性                             | 82  |
| 4-1-3-3 疲労強度                                   | 83  |
| 4-1-4 結 言                                      | 85  |
| 参考文献                                           | 86  |

| 4-2 無電解 Ni-P めっきを施した Al-1.2%Si 合金の疲             |
|-------------------------------------------------|
| 労強度に及ぼす表面組織と水素の影響95                             |
| 4-2-1 緒言                                        |
| 4-2-2 実験方法95                                    |
| 4-2-2-1 試料作製、熱処理・めっき処理条件と                       |
| 測 定 方 法                                         |
| 4-2-3 結果および考察                                   |
| 4-2-4 結言                                        |
| 参 考 文 献                                         |
| 図 表                                             |
|                                                 |
| 第 5 章 無電解 Ni-P めっき処理した Al-Ge および                |
| Al-Cu 合 金 の 疲 労 強 度 に 及 ぼ す 表 面 組 織 と 水 素 の     |
| 影響                                              |
| 5-1 Al-4% Ge 合 金 の 機 械 的 性 質 に 及 ぼ す 無 電 解 Ni-P |
| めっきの影響111                                       |
| 5-1-1 緒言                                        |
| 5-1-2 実験方法111                                   |
| 5-1-2-1 試料作製、熱処理・めっき処理条件と                       |

义

| 測 定 方 法 11                       |
|----------------------------------|
| 5-1-3 結果および考察113                 |
| 5-1-3-1 熱処理後の表面組織11              |
| 5-1-3-2 硬さおよび引張り特性114            |
| 5-1-3-3 疲労強度11                   |
| 5-1-3-4 水素放出量11                  |
| 5-1-4 結 言                        |
| 参考文献113                          |
| 図 表                              |
| 5-2 無電解 Ni-P めっきを施した Al-2%Cu および |
| A1-2%Zn 合金の疲労強度に及ぼす表面組織と水        |
| 素の影響129                          |
| 5-2-1 緒言                         |
| 5-2-2 実験方法129                    |
| 5-2-3 結果および考察130                 |
| 5-2-3-1 熱処理後の表面組織                |
| 5-2-3-2 疲労強度13                   |
| 5-2-3-3 水素放出量13                  |
| 5-2-4 結言                         |
| 参考文献                             |
| 図 表                              |

| 第6章 総括     |      | 3 |
|------------|------|---|
| 6-1 本論文の総括 |      | 3 |
| 6-2 実用化への取 | 組み14 | 5 |
| 参考文献       |      | 7 |

| 謝 | 辞 |  |  | •••• |  |  |  |  | 148 |
|---|---|--|--|------|--|--|--|--|-----|
|---|---|--|--|------|--|--|--|--|-----|

# 第1章 序 論

1-1. 本研究の背景

アルミニウムは、原子番号13、原子量26.9、密度2.78g/cm<sup>3</sup>、融点660℃、沸点2519℃ で、銀白色を示し、良好な熱伝導性・電気伝導性を持ち、加工性に優れ、実用金属とし ては軽量であるため、鉄鋼材料に次いで使用されている。熱力学的に酸化されやすい金 属であるが、空気中では表面に生成する緻密な酸化膜により内部が保護されるため、耐 食性にも優れている<sup>1)</sup>。また、銅、マンガン、マグネシウムあるいはケイ素などと合金 化することによって、物理的性質を向上できるため、様々な産業分野で用いられている。

アルミニウムは、これまで基幹素材として利用されてきた鉄鋼材料よりも軽量化が期 待出来ることから、各産業においてその使用が拡大している。一方、他の金属材料と比 較し、一般的に広く知られている問題点および課題としては、以下の現象が挙げられる。

(1) 自然に形成された酸化皮膜があり、そのままでは密着力に優れた皮膜が得られない。

(2) そのため適当な前処理を必要とするが、酸化皮膜を除去しても次工程へ移行中にも再酸化され易い。

(3) 多くのめっき・表面処理溶液に侵され易い。

(4) 性質の異なる多種の合金があり、合金組成によって前処理や後処理が異なる。

(5) 熱処理や冷間加工された合金は含有金属の偏析などにより、表面性質が異なる<sup>2)</sup>な どが挙げられる。

(1)~(4)においては、他の論文や技術開発によってほぼ解決されているが、(4)、(5)に ついては原理的な理解に乏しく、特に明瞭な技術的解決手法が見出されていない状況で ある。これらの現象の詳細については第4章以降に述べる。

近年自動車などを中心とした輸送機器産業では、CO<sub>2</sub>排出量削減・低燃費化に対する 対策として部品の一層の軽量化に迫られており、それに対応するため、これまで多用さ れてきた鉄鋼材料に代わり、軽量で加工性,耐食性に優れたアルミニウム合金の適用が拡 大している<sup>3</sup>。素材としてのアルミニウムには、純アルミニウム系およびそれに他の元 素を添加したアルミニウム合金があり、これらは、原料と加工品に分類することができ る。また、アルミニウムの原材料を地金と呼び、特に再生品を含まないものを新地金と 呼んでいる<sup>4</sup>。現在、日本では新地金の大部分は輸入(99%)であり、国内のアルミニ ウムメーカーのほとんどが材料や部品、完成品などの加工品を扱うメーカー、輸入した 地金そのものとその加工品を扱うメーカー、あるいは二次地金のメーカーである<sup>4</sup>。

軽金属には、アルミニウムの他にもマグネシウムおよびチタニウムが代表的な材料として取り扱われているが、加工性、耐食性、コストなどの生産性の利点より軽金属の中でもアルミニウムが最も広く産業に用いられている。それら二次地金の用途別需要量の推移を Fig. 1-1<sup>5</sup>に示す。アルミニウム需要の6割近くが圧延であり、形状・製法としては、板、条、棒、線、管、鍛造品、鋳造品、ダイカスト等が挙げられる。輸送機器産業の主要製品である自動車用は、ダイカスト、鋳造品が約8割とされている。

Fig. 1-2<sup>5</sup>には、自動車のルーフを鉄鋼材料からアルミニウム合金に置き換えた場合の 軽量化効果を、Fig. 1-3<sup>5</sup>には、自動車の燃費と車両重量の関係を示す。燃費向上に対し ては車両の軽量化が極めて有効であり、Fig. 1-4<sup>5</sup>に示すように鉄鋼材料からアルミニウ ム合金への置換によって大幅に軽量化が達成できることから、今後、アルミニウム合金 の適用は、益々増加することが予想され、それに伴い、アルミニウム合金への表面処理 の重要性も増すと思われる。次に表面処理の目的を Table 1-1<sup>6</sup>に示す。また Fig. 1-5<sup>6</sup>に はアルミニウムの表面処理をまとめて示す。概略するとめっき処理、陽極酸化処理、化 成処理および塗装がある。

## 1-2. 表面改質を目的とする研究開発の課題

**Fig1-3<sup>9</sup>**は、今後のアルミニウム産業の発展の方向性を示すものであり、革新的リサイクル技術の開発ならびに新たな需要開拓を推進することを重要な課題としている。そこで新たな用途拡大を目的とし、金属とプラスチックを接合することによってこれまでにない新たな機能を付与することが可能であり、特に大幅な軽量化が期待できるアルミニウムーエンジニアリングプラスチック間での接合技術の重要性が増大している。前述のように自動車産業では部材の軽量化が強く望まれており、その中でも自動車各機能の電子制御化の動きが急速に拡大していることから車載 ECU(電子制御装置)の軽量化・高信頼性に対する要望が強く、鉄鋼からアルミニウム合金 - プラスチック材料への転換が積極的に進められている。

アルミニウム合金は、比強度・耐食性に優れるとともに、熱伝導性が極めて高く、熱量の大きい ECU を安定動作させるためには、アルミニウム合金の利用が不可欠である。

また、プラスチックは、軽金属材料よりもさらに比重が小さく、加工性・耐食性に優れ、 特にエンジニアリングプラスチックは、従来のプラスチックよりも高強度化されている ため、車両への適用が拡大している。しかしそのヤング率は、アルミニウム合金のそれ に比べると、1/50~1/20 程度と非常に小さく、剛性に大きな問題がある。

このため、アルミニウム合金とプラスチックを接合することで、剛性に富んだ軽量部 材の開発が可能になることから、異材接合技術<sup>7)、8)</sup>の重要性が増大している。金属材料 - プラスチック材料の接合では、両者の物性差が大きく、金属材料のように溶接を適用 することができないため、通常、機械的締結あるいは接着剤が用いられている。

しかし、これらのプロセスについて、機械的締結の場合では、穴あけや締結等の作業 面とそれに伴うコスト増などの問題点がある。特に輸送機器のような大量生産では、コ スト面が適用への大きな障害となっている。接着剤の場合、機械的締結よりもコスト面 では大幅に抑制でき、インライン化も可能になるが、接着剤自身が高分子材料であるた め、金属材料間での溶接のような十分な信頼性が得られないという問題点がある。さら に車載用部材には、車両が使用される期間での信頼性の確保という極めて厳しい要求が ある。アルミニウム合金の特徴として良好な耐食性があるが、長期間での信頼性を確保 するためには、陽極酸化処理をはじめとする表面処理が必要不可欠である<sup>9,10</sup>。

#### <u>1-3. 本研究の目的</u>

1-1 および 1-2 で述べたように、自動車等の軽量化をはかる上での課題を克服するためには、めっき処理等の表面処理技術を用いることによるアルミニウム合金材料への機能向上創製技術<sup>7</sup>に着目した研究が必須と考えられる。そこで本研究は、軽量化に最も重要な材料の一つであるアルミニウム合金の疲労強度、耐摩耗性、耐食性ならびに装飾性を高めるなどの複合的な要求を満たす最適な表面処理技術の確立<sup>11)</sup>を目的とした。また、そのためには基板表面の微細組織の解析が不可欠である<sup>12)</sup>と考え、めっき処理等で得られる皮膜構造の基礎的知見<sup>13)</sup>、ならびに熱処理後のめっき処理<sup>14)</sup>や陽極酸化処理<sup>15)</sup>が、アルミニウム合金の光輝性<sup>16)</sup>や機械的性質等<sup>16,17,18,19</sup>におよぼす影響について明らかにしている。

#### 1-4. 本論文の構成

本論文は、アルミニウム合金にめっき処理や陽極酸化処理が施された試料表面の表面

特性、防食性・耐摩耗性・意匠性等や機械的特性、ならびにめっき処理時に発生する水 素が疲労強度<sup>9</sup>におよぼす影響に関した研究をまとめたもので6章からなっている。

第1章では、自動車産業を中心とする輸送機器において、地球環境改善に向けた CO<sub>2</sub> 排出量削減が重要な課題であることから、鉄鋼材料からアルミニウム合金への軽量化に よる燃費向上とアルミニウム合金の用途別需要と軽量化効果について述べた。次に本研 究の目的については、アルミニウム合金の微細組織の構造変化が、めっき処理および陽 極酸化処理技術により、耐摩耗性と耐食性ならびに装飾性を高めるなどの複合的な要求 を満たす最適な表面処理技術の確立について概説している。さらに、第2章以降で実施 した研究内容を研究別に示し、本研究の内容を明らかにした。

第2章は、アルミニウム鋳造合金 AC4CH-T 6 材への光輝性付与におよぼす陽極酸化処 理の影響について述べた後、この合金に対する表面処理条件や熱処理条件ならびに添加 元素の影響について検討した結果を述べた。更に、光沢度計((株)村上色彩技術研究 所製,デジタル光沢計(GM-3D))により、光沢度を求め、光輝性に及ぼす各種表面処 理の影響を検討した結果、この合金の光輝性に対して添加元素が重要な影響をおよぼす ことを明らかにした。

第3章では、新たに開発したアルミニウム鋳造合金(Al-Mg-Zn系)へのめっき処理に よる皮膜の密着性および光輝性について、この合金への熱処理、電解研磨処理および下 地亜鉛置換処理の影響を検討した結果、この合金に対するめっき皮膜の密着性は、時効 処理で生じる微細なT相(Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>)が下地亜鉛置換処理によって脱落し、表面に微細 な凹部が形成され、そのアンカー効果によって向上することを示した。また、Siを含む アルミニウム鋳造合金へのめっき処理による光輝性の低下は、機械研磨で生じる共晶 Si 相のうねりおよび化学的に安定なSi相の凸形成が主因であることを示した。なお、この うねりによる光の散乱防止には、基板表面の硬度均一化が有効であることを述べ、その 原因を明らかにした。さらに、アルミニウム鋳造合金へのめっき処理による光輝性の低 下因子を、電界放射型電子プローブマイクロアナライザー(FE-EPMA)、透過電子顕微鏡 (TEM)、光学干渉式表面形状観察装置,電界放射型走査電子顕微鏡(FE-SEM)による観察 結果を基に考察した結果を述べた。

第4章では、アルミニウム鋳造合金(Al-Si系)の機械的性質に及ぼす無電解Ni-Pめっ

き処理の影響について考察するために、炉冷処理と時効処理を施した両熱処理材につい て硬さならびに引張り特性を求めるとともに、繰返し引張り疲労試験による疲労強度の 調査も行った。更に、炉冷処理材においてめっき処理後に疲労強度が低下するのは、亜 鉛置換処理およびめっき処理時に発生する水素ガスの一部が炉冷材中に入り込み、特に 高サイクル負荷中に試料表面の μm サイズ析出物とめっき皮膜の界面付近に集積し、微 視き裂発生に著しい影響を及ぼすことを明らかにした。

第5章では、析出挙動が第4章のアルミニウム鋳造合金(A1-Si系)に類似し、 $\mu$ m サイズ析出物が生成されるアルミニウム鋳造合金(A1-Ge系)について、熱処理後のめっき処理による機械的性質の変化ならびに昇温時の水素放出量を測定した。また、水素吸蔵量の評価は、ガスクロマトグラフィー型の昇温水素脱離分析装置を使用し、無電解 Ni-P めっきの有無による試料表面に吸蔵された水素の放出挙動を検討した。また、この水素が疲労試験時に炉冷処理材の表面付近に存在する粗大な Ge 析出物と母相ならびに約 $30 \mu$ m 厚さの緻密な非晶質 Ni-P めっき皮膜界面に集まり、微視き裂の発生を促すことにより破断を促進すると考察した。更に、これらの合金系とは異なる析出挙動ならびに結晶構造を有する粗大な $\mu$ m サイズ析出物が生成される A1-Cu 合金についても同様な調査を行った結果、上述の解釈の一般性が成立することを明らかにした。

第6章は、本研究で得た成果と諸結果を、本論文の総括を示して結論とした。

#### 参考文献

1) M.Hino, N.Nagata, K.Murakami, Y.Mitooka and T.Kanadani: Altopia 45 (2015) 5-10.

2) Development and new applications development, national plating number line Federation of alloy plating of plating technology to new materials (1985), pp58-73, Shinohara length.

3) H.Horikawa: JILM 58 (2008) 259.

4) K. Hosokawa, M.Matsunaga, Metal Surface Technology, 34(1983) 98-103.

5) The Japan Aluminum Association: aluminum social contribution and ecology, metal industry guidance site metal Wonder Avenue (online),

<a href="http://www.metal-wonder-avenue.jp/">http://www.metal-wonder-avenue.jp/</a>, (see 2015-04-12).

6) D.Altenphol: (1971) aluminum metal processing science Introduction, P174, light metal Society

7) Aluminum Handbook: light metal Society(1990).

8) C.Kittl: Intorodaction to Solid State Physics ,6 ed John Weley Sons (1986).

9) M.Schlesinger and M.Paunovic: Modan Electroplating 5 ed., John Wiley Sons(2010).

10) M.Hino, Electroplating Study Group, modern plating textbooks, Nikkan Kogyo Shinbun (2011) 163-169

11) C.H.Kissin: (1963) Finishing of Aluminum.

12) Walton, C. J., and W King: (1965) ASTM Special Publication No. 175.

13) S.Wrmick, R.Pinner and P.G.Sheasby: (1987) The surface treatment and finishing of aluminum and it alloys.

14) Plating and Surface Finishing: No3 (1981) 51-54.

15) Aluminum surface technology: Handbook of Light Metal Publication (1994).

16) Fujio Namiya: Chemical polishing and electrolytic polishing Maki bookstore (1997).

17) Plate and conditions of JIS H 4000: Aluminum and Aluminum (1997).

18) JIS H 5202 aluminum alloy casting: (1992).

19) JIS H 5302 aluminum alloy die-casting: (1985).

図・表



Fig.1-1 Transition of aluminum secondary alloy ingots and secondary bullion applications by demand.



Fig.1-2 The  $\mathrm{CO}_2$  emission reduction effect of aluminium application.

アルミニウムの完全ライフリサイクル化(循環型社会への貢献)



PPR サイクル: Product Process Recycle サイクルの略

Fig.1-3 Ecology building models of aluminum industries.

# 燃費改善技術は、細かい地道な技術の積み重ね。 モード燃費だけでなく、実用の燃費を良くするためにも努力している。



Fig.1-4 The main improvement of fuel efficiency technology



Fig.1-5 Surface treatment types of aluminum.

| 処理     | 付与される機能                                     |
|--------|---------------------------------------------|
| 脱脂     | 油分や汚染層の除去                                   |
| 機械研磨   | 傷除去、つや消し                                    |
| 化学研磨   | 光沢性                                         |
| 電解研磨   | 光沢性(光輝性)、平滑性                                |
| 陽極酸化処理 | 耐食性、機能性(耐摩耗性・放熱性)、装飾性(カラー化等)                |
| めっき処理  | 耐食性、装飾性、機能性(耐摩耗性·潤滑性·離型性·導電性·<br>熱吸収性·反射性等) |
| 化成処理   | 耐食性、密着性等                                    |
| 塗装     | 耐食性、耐摩耗性等                                   |

 $\label{eq:table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_$ 

# 第2章 アルミニウム鋳造合金への光輝性付与に及ぼす 各種表面処理の影響

<u>2-1. 緒 言</u>

自動車産業では、低炭素社会の実現に向けた CO<sub>2</sub>排出量の削減に対応するため、車体の軽量化が最重要課題のひとつとなっている。そのため、これまで多用されてきた鉄鋼材料から軽量化が期待できるアルミニウム材料への転換が進んでおり、自動車産業でのアルミニウム材料へのニーズは、年々高まっている<sup>1)</sup>。特に自動車用ホイールについて、 スチール材からアルミニウム材への代替が著しい<sup>2)</sup>。

アルミホイールは加工性に優れていることから、自動車のエクステリアを際立たせる ために効果的で、特に装飾めっきによる鏡のような光輝性に優れたホイールへのニーズ が高い。しかし、アルミニウム合金は化学的に活性で、強固な酸化皮膜で覆われるため、 直接めっきを行った場合、密着性を確保することが難しい。通常、アルミニウムへのめ っきでは、密着性の確保を目的とし、同じ亜鉛置換処理を2回繰り返す亜鉛置換処理と いう特殊な前処理が行われている<sup>3)</sup>。しかし、亜鉛置換処理を行っても膨れやブツ、変 色、密着不良などのめっき不良が発生する場合がある。特に鋳造材では、鋳巣やピンホ ールなどの鋳造に起因する欠陥が材料表面に存在するため、めっき不良が生じやすく、 生産上、大きな問題となっている。そのため、めっきフリーでめっき品と同等の光輝性 が得られる新たな技術開発が望まれている。

これまで鋳造用アルミホイールの素材には、強度および鋳造性に優れた AC4CH-T6 材 (Al-Si-Mg 系)<sup>4)</sup>が多用されている。しかし、この材料では、めっきやドライコーティ ング等の表面被覆以外のプロセスによる光輝性付与は極めて困難である。

本研究では、AC4CH-T6材と同等の機械的性質を有し、めっきやドライコーティング 以外のプロセスによって光輝性が得られる鋳造用アルミニウム合金の開発を行った<sup>5.0</sup>。 AC7A材(Al-Mg系合金)をベースに機械的性質の向上を図るため、亜鉛を添加するこ とによって熱処理型合金となるように調整した。ここでは、この開発材の光沢度に及ぼ す各種表面処理の影響についての検討結果を報告する。

一般的に、日本国内における電子部品の品質試験方法は、日本工業規格 JIS や国際規格 ISO によって定められており、金属表面処理(めっき)の耐食性試験(Methods of corrosion resistance test for metallic coatings)は JIS H85021)に記されている。また、耐食

性試験後の評価方法としては、レイティングナンバによる等級付けが知られており、評価対象領域の腐食面積率により判断する方法である。しかし、これまで腐食面積率の算出は、目視および光学顕微鏡により判断するため、測定者の経験に頼るところが大きく(人為的誤差)、定性的であり、かつ、観察に時間を要する。したがって、前記方法に代わる定量的な腐食判定方法の確立が望まれている。本研究では、画像処理技術に着目し、機器分析等の手法も併せることにより、定量的かつ簡便な腐食判定方法の確立を目的とした。

## 2-2. 実験方法

## 2-2-1. 試料調整と表面処理条件

実験には、現状の鋳造アルミホイールに適用されている AC4CH-T6 材、開発材<sup>5)</sup>なら びに A5052 材を使用した。化学組成を Table2-1 に示す。また、Table2-2 に示す溶体化 +時効処理(AC4CH 材は T6 処理)を行った。各試料に対してバフ研磨、化学研磨、電解 研磨をそれぞれ行った。なお、バフ研磨では、研磨条件によって仕上がり状態が大きく 変化することから、本実験では、バフ研磨装置(上村工業(株)製)を用い、Table2-3 に示した条件によって同一条件でバフ研磨を行った。また、電解研磨条件を Table2-4 に 示す。さらに耐食性および塗膜密着性の向上を目的として、電解研磨処理後の試料に対 して陽極酸化処理を行った。陽極酸化処理条件を Table2-5 に示す。

## 2-2-2. 評価方法

処理後の表面について、外観観察、非接触式三次元構造解析顕微鏡(Zygo New View 5000)による表面形状測定、X線マイクロアナライザーによる SEM 観察および元素マッピングを行った。また、光沢度計((株)村上色彩技術研究所製、デジタル光沢計(GM-3D))により、光沢度を求め、光輝性に及ぼす各種表面処理の影響を調べた。

## 2-3. 結果および考察

#### 2-3-1. バフ研磨による光輝性

Fig.2-1 には、同一条件でバフ研磨を行った AC4CH-T6 材および開発材の外観を示す。 AC4CH-T6 材では、背景の格子が不鮮明に写し出されているのに対し、開発材では、格 子が鮮明に写し出されている。各試料の光沢度は、AC4CH-T6 材が 470% であるのに対 して、開発材は785%であった。このように開発材は、バフ研磨によってAC4CH-T6材 よりも優れた光輝性が得られる。なお、AC4CH-T6材に装飾めっき(亜鉛置換処理/シ アン化銅めっき/硫酸銅めっき/ニッケルめっき/装飾クロムめっき)を施した試料(現 行のアルミホイールでのめっき仕様)のそれが750%であり、開発材はバフ研磨を施す ことによって装飾クロムめっき以上の光輝性を得ることができる。

Fig.2-2 には、AC4CH-T6 材および開発材のミクロ組織を示す。AC4CH-T6 材は、鋳造 に起因するデンドライト組織を呈しているが、開発材では明瞭なデンドライト組織は認 められない。両者は同じ重力鋳造法によって作製されているが、ミクロ組織が大きく異 なっており、これは各材料の化学組成に起因する。すなわち Al-Si-Mg 系合金である AC4CH 材は、固相状態においてアルミニウム中に Si をほとんど固溶しない典型的な共 晶合金である。一方、Al-Mg-Zn を主成分とする開発材は、共晶温度でのマグネシウムお よび亜鉛の固溶量が、それぞれ添加量を上回っているため、両者のミクロ組織は大きく 異なっている。

AC4CH-T6 材および開発材料について、バフ研磨後の表面二次電子像を Fig.2-3 に示す。 両者ともにバフ研磨によって生じた研磨傷が観察され、この点では差異は認められない。 しかし、AC4CH-T6 材では、Fig.2-2 のミクロ観察で確認された結晶粒界に沿った析出物 の部分で研磨傷が消え、不連続となっていた。このことから、この析出物は、マトリッ クスよりも硬質であると推測される。

Fig.2-4 には、AC4CH-T6 材および開発材でのバフ研磨表面のX線マイクロアナライザーによる二次電子像および元素マッピング結果を示す。AC4CH-T6 材について、主成分であるアルミニウムの他に、添加元素であるSi およびマグネシウムが不均一に分布しており、Fig.2-2 で観察された結晶粒界に沿った析出物は共晶Si であった。また、マグネシウムは、僅かではあるが縞状に濃化しており、その部分で酸素も濃化した。マグネシウムを合金化元素とする5000番系合金やAC7A材(Al-Mg系合金)は耐食合金として適用されている。元素マッピングによるマグネシウム濃化部に対応する酸素の濃化と併せ、マグネシウムはアルミニウム合金中で酸化、すなわち不働態化を促進する働きを有することが示唆される。

一方、開発材では、マグネシウムが結晶粒界に沿って僅かに偏析し、その部分で酸素 も濃化しており、AC4CH-T6材でのマグネシウムと酸素の存在状態とも一致した。また、 亜鉛は均一に分布し、AC4CH-T6材で確認された共晶 Siのような顕著な偏析は認められ なかった。Fig.2-5 には、AC4CH-T6 材および開発材でのバフ研磨表面の三次元表面形態 測定結果を示す。AC4CH-T6 材では、粒界に沿って析出した共晶 Si 部が盛り上がってい るが、これは共晶 Si がマトリックスのアルミニウム固溶体よりも硬いため、バフ研磨に おいて軟らかいマトリックスが優先的に研磨されることに起因する。Fig.2-3(a)に示した 二次電子像において、析出物に研磨傷が認められない結果とも一致する. なお、表面粗 さ Ra (算術平均粗さ) は 0.66µm であり、この表面の凹凸が光輝性の低下を招いている ことがわかった.

一方、開発材では、硬い共晶 Si が存在しないため、平滑な表面(表面粗さ Ra:0.48µm) が得られ、優れた光輝性を示す。なお、透過電子顕微鏡観察による開発材の微細組織を Fig.2-6 に示したが、熱処理(溶体化+時効)を行うことにより、微細な T相(Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>) がマトリックス中に析出していることがわかる。このように開発材は、時効硬化型合金 として、T相析出による機械的性質の向上を図っている。

## 2-3-2. 光輝性に及ぼす化学研磨および電解研磨の影響

前項において、バフ研磨による開発材の光輝性は、鋳造用合金 AC4CH-T6 材のそれよ りも優れていることを示した。しかし、開発材は、複雑な形状が容易に作製可能な鋳造 に用いられることから、バフ研磨の適用が困難なケースも生じる。また、バフ研磨によ るコスト増も懸念されるため、ここでは開発材に対する化学研磨および電解研磨を検討 した。なお、鋳造材に対する比較材として A5052 シート材も併せて評価した。

Fig.2-7 には、開発材および A5052 シート材に対して化学研磨を行った試料の外観を示 す。開発材では、化学研磨の条件(電解液,温度,時間)を様々に変化させたが、光輝 性を得ることはできなかった。しかし,A5052 シート材では、比較的容易に良好な光輝 性を得ることができ、これらの光輝性の違いは、両者の製造法に起因すると考えられる。 すなわち化学反応に基づく化学研磨では、圧延材のように鋳造材よりも組織の不均一性 が少ない材料は、均一な溶解反応によって光輝性に富んだ表面加工が可能である。ちな みにA5052 合金製鍛造アルミホイールには化学研磨による光輝処理が適用されている。 一方、開発材を含む鋳造材では、組織の不均一性、汚濁としての不純物の含有、ピンホ ールや鋳巣などの鋳造欠陥が存在するため、均一なエッチングが極めて困難である。

**Fig.2-8**には、開発材に対して硫酸+リン酸溶液中で電解研磨を行った試料の外観を示したが、背景の格子が鮮明に写し出されている。電解研磨では、外部電源によって陽極

電解を行っているが、溶液組成および電解条件(電圧,浴温)を最適化することで試料 表面の酸化および溶解の制御が可能になる。そのためバフ研磨と同程度(光沢度:754%) の光輝性が得られる。Fig.2-9 には、開発材に対してバフ研磨、化学研磨、電解研磨を行 った試料表面の反射電子像を示す。バフ研磨後の表面(Fig.2-9(a))には、汚濁である金 属間化合物(Al<sub>3</sub>Fe)が数多く存在し、ピンホールも多数認められる。

次に、化学研磨(Fig.2-9(b))では局部的な溶解が生じており、これによって光輝性が低下する。これらの局部的な溶解は、金属間化合物(Al<sub>3</sub>Fe)近傍でのアルミニウムのアノード溶解とそれに伴う金属間化合物の欠落、ならびにピンホール部での局部的な溶解によって生じる。そのため、バフ研磨表面で観察された金属間化合物は完全に消失する。

一方、電解研磨では、化学研磨で消失する金属間化合物(Al<sub>3</sub>Fe)が観察され、局部的 な溶解が抑制されていることがわかる。このように電解研磨では、条件を最適化するこ とによって金属組織に起因する不均一溶解を抑制することができ、光輝性に富んだ表面 加工が可能になる。

2-3-3. 光輝性に及ぼす陽極酸化処理の影響

7000番系アルミニウム合金は、優れた機械的性質を示す一方で、耐食性は他の合金系よりも劣る<sup>7</sup>。Al-Mg-Zn系合金である開発材は、7000番系合金と構成元素が類似していることから防食性を考慮した表面処理が重要である。アルミニウムへの表面処理として、一般に陽極酸化処理が広く適用されていることから、ここでは開発材への陽極酸化処理について検討した。

Fig.2-10 には、開発材に対して Fig.2-8 に示した電解研磨を施した後、標準的な手順に よる硫酸陽極酸化処理<sup>8</sup>ならびに新たに開発した陽極酸化処理<sup>9</sup>を行った試料の外観を 示す。硫酸陽極酸化処理した表面では、背景の格子が不鮮明に映し出されており、光輝 性は著しく低下した。なお、光沢度は382%であった。

一方、開発陽極酸化処理では、背景の格子が鮮明に写し出され、光沢度は701%であった.。この値は現状のアルミホイールのめっき品より僅かに劣るものの、開発陽極酸化 処理が、光輝性の低下を抑制し、かつ耐食性も向上させる表面処理として極めて有用で あることを示している。

ところで、硫酸陽極酸化と開発陽極酸化では光輝性が大きく異なることが判明したが、 その要因を調べるため、A5052シート材に対して各陽極酸化処理を行い、陽極酸化皮膜 の断面観察を行った.

Fig.2-11 には、各陽極酸化皮膜断面の反射電子像を示す。硫酸陽極酸化では、酸化皮 膜に多数の空隙が観察され、この不均一な酸化皮膜が光の乱反射を生じさせ、Fig.2-10 (a) のような光輝性の低下を招くと思われる。なお、この空隙は、強酸性である硫酸陽極酸 化浴中では、陽極電解において、汚濁として存在する金属間化合物 (Al<sub>3</sub>Fe)の酸化皮膜 の生成が、マトリックスのアルミニウムでのそれよりも抑制される。そのため、金属間 化合物が優先的に溶解すると思われる。

一方、開発陽極酸化では、酸化皮膜中に金属間化合物(Al<sub>3</sub>Fe)が残存している。開発 浴はpHを調整することで溶解反応を抑制させているため、金属間化合物が皮膜中に残 存し、結果として光輝性を有する酸化皮膜が形成される。

#### <u>2-4. 結言</u>

AC4CH-T6 材およびそれと同等の強度を有した開発材料ついて、光輝性に及ぼす各種 表面処理の影響を検討し、以下の結論を得た。

- (1) AC4CH-T6 材は、バフ研磨による光輝性表面を得ることが困難であった。これは、 バフ研磨における硬い共晶 Si とマトリックス間で生じる表面凹凸に起因する。一方、 開発材では Si を含まないため、バフ研磨によって優れた光輝性が得られ、光沢度は AC4CH-T6 材に装飾めっきを施したそれよりも高い値を示した。
- (2) 開発材への化学研磨では、金属間化合物(Al<sub>3</sub>Fe)やピンホール部での局部的な溶解 反応が生じるため、光輝性が著しく低下した。一方、電解研磨では、電解条件の最 適化により、金属組織に起因する不均一溶解を抑制することができ、光輝性に富ん だ表面を得ることができた。
- (3) 硫酸陽極酸化では金属間化合物(Al<sub>3</sub>Fe)が優先的に溶解するため、不均一な酸化皮 膜が形成され、その結果、光輝性が低下した。一方、開発陽極酸化では金属間化合 物(Al<sub>3</sub>Fe)が溶解せず、均一な酸化皮膜が形成される。その結果、光輝性を有し、 かつ耐食性も兼備した表面処理技術を確立することができた。

参考文献

1) H. Horikawa : JILM 58 (2008) 259.

2) The Japan Aluminum Association-wheel Committee : Aluminum Wheels Statistics No.24 (2010) 20.

3) M. Hino, K. Murakami and T.Kanadani : Science and Industry 85(2011)1-12.

4) Y. Kitaoka : JILM 61 (2011) 485.

5) S. Kawai, H. Kanetuki, M. Hino and K. Murakami : Japanese Patent Application (2010). . No.2010-56677.

6) S. Kawai and H. Kanetuki : Arutopia 41 (2011) 8.

7) (Company) Light Metals. (1991). organization and the nature of the aluminum. 311.

8) (Company) surface technology Kyokai : Surface Technology Handbook, Nikkan Kogyo Shimbun (1998) 519.

| Alloy              | Si   | Mg   | Zn   | Fe   | Cu   | Ni   | Ti   | Pb   | Sb   | Mn   | Cr   | В    | Be    | Al   |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|
| AC4CH              | 6.77 | 0.35 | 0.01 | 0.11 | -    | 0.01 | 0.12 | 0.01 | 0.14 | -    | -    | -    | -     | bal. |
| Developed<br>alloy | 0.08 | 4.73 | 3.03 | 0.18 | 0.06 | -    | 0.10 | -    | -    | -    | -    | 0.05 | 0.002 | bal. |
| A5052              | 0.10 | 2.39 | 0.01 | 0.27 | 0.02 | -    | 0.02 | -    | -    | 0.04 | 0.19 | -    | -     | bal. |

 Table 2-1 Chemical compoSition of specimens (mass%).

| Alloy              | Solution heat<br>treatment<br>temperature (K) | Solution heat treatment<br>time (ks) | Aging<br>temperature (K) | Aging<br>time (ks) |
|--------------------|-----------------------------------------------|--------------------------------------|--------------------------|--------------------|
| AC4CH              | 808                                           | 10.8                                 | 433                      | 14.4               |
| Developed<br>alloy | 703                                           | 21.6                                 | 433                      | 28.8               |

 Table 2-2 Heat treatment conditions for AC4CH casting and developed alloy casting.

| Compound type               | U lime white (Alumina) |
|-----------------------------|------------------------|
| Compound addition quantity  | 3g                     |
| Buff type                   | Cotton bias            |
| <b>Rotational frequency</b> | 1800 rpm               |
| <b>Buffing time (s)</b>     | 16                     |

 Table 2-3 Buffing conditions.

| Composition of electrolytic solution | Mixed acid<br>(Sulfuric acid+Phosphoric acid):8mol/L |  |  |
|--------------------------------------|------------------------------------------------------|--|--|
| pН                                   | 0                                                    |  |  |
| Voltage                              | 20                                                   |  |  |
| Temperature (K)                      | 338                                                  |  |  |
| Treatment time (s)                   | 60                                                   |  |  |

# Table 2-4 Electropolishing conditions.

| Anodizing type                       | Sulphuric acid solution                               | Developed solution     |  |  |
|--------------------------------------|-------------------------------------------------------|------------------------|--|--|
| Composition of electrolytic solution | Sulfuric acid :1.8 mol/L<br>Dissolution aluminum:5g/L | Phosphate+<br>additive |  |  |
| pH                                   | 1                                                     | 12                     |  |  |
| Voltage                              | 8                                                     | 8                      |  |  |
| Temperature (K)                      | 295                                                   | 295                    |  |  |
| Treatment time (s)                   | 180                                                   | 180                    |  |  |



Fig. 2-1 Appearance of the various specimens after the buffing. (a) AC4CH-T6 casting (b) Developed casting



100µm

**Fig. 2-2** Optical microstructure of the specimens. (a) AC4CH-T6 casting (b) Developed casting





Fig. 2-3 Secondary electron images of the specimens after the buffing. (a) AC4CH-T6 casting (b) Developed casting


Fig. 2-4 Secondary electron images and X-ray maps for aluminum, silicon, magnesium, zinc, and oxygen by FE-EPMA analysis for the various specimens after the buffing.
 (a) AC4CH-T6 casting (b) Developed casting



**Fig. 2-5** Surface morphology of the various specimens after the buffing. (a) AC4CH-T6 casting (b) Developed casting



Fig. 2-6 TEM images of the developed casting after the solution heat treatment and aging treatment.



Fig. 2-7 Appearance of the various specimens after the chemical polishing. (a) Developed casting (b) A5052 sheet



Fig.2-8 Appearance of the developed casting after the electropolishing.



Fig.2-9 Backscattered electron images of the developed casting surfaces after various surface treatment. (a) Buffing (b) Chemical polishing (c) Electropolishing



Fig.2-10 Appearance of the developed casting after anodizing from the various solutions. (a) Sulphuric acid solution (b) Developed solution



Fig.2-11 Backscattered electron images of the cross-sectional anodic oxide coating from the various solutions.(a) Sulphuric acid solution (b) Developed solution

# 第3章 アルミニウム鋳造合金への光輝性付与に及ぼす無電解 Ni-P めっき 処理の影響

# 3-1 輸送機器向け鋳造用 Al-Mg-Zn 系合金の亜鉛置換皮膜形成と 無電解 Ni-P めっき皮膜の密着性

#### 3-1-1. 緒言

前章では光輝性に及ぼす各種表面処理の影響について述べた。AC4CH-T6材では、バ フ研磨による光輝性表面を得ることが困難であった。これはバフ研磨における硬い共晶 Si相とマトリックス間で生じる表面凹凸に起因する。一方、開発材では、Siを含まない ため、バフ研磨によって優れた光輝性が得られ、光沢度は、AC4CH-T6材に装飾めっき を施したそれよりも高い値を示した。さらに、電解研磨処理では、最適な諸条件を用い た場合においては、金属組織に起因する不均一溶解を抑制することができ、光輝性に富 む表面を得ることができた。また、硫酸陽極酸化処理を用いた場合では金属間化合物

(Al<sub>3</sub>Fe)が優先的に溶解するため、不均一な酸化皮膜が形成され、その結果、光輝性が 低下した。一方、開発陽極酸化処理では金属間化合物(Al<sub>3</sub>Fe)が溶解せず、均一な酸化 皮膜が形成される。その結果、光輝性を有した表面処理技術を確立することが可能とな った。一方、陽極酸化処理技術以外でのめっき処理技術を用いた光輝性の要求も強い。 しかし、そのプロセスで用いる亜鉛置換処理については依然として、密着機構等が不明 であるため、この析出挙動の理解を得るための研究を行った。

したがって、本章3-1・3-2・3-3項では光輝性に及ぼすめっき処理についての理解を得 るため、アルミニウム合金への亜鉛置換ならびにめっき処理についての影響を示す。 輸送機器の軽量化を目的として、エンジン・ボディ・外装・足まわり部品等に対するア ルミニウム合金の適用が拡大している。アルミニウム合金の表面特性、即ち防食性・耐 摩耗性・意匠性等を向上させる方法として、研磨・塗装・陽極酸化・化成処理・めっき 等が挙げられ、特にめっきを行う場合には、めっき皮膜と基板の間で十分な密着強度を 得ることが重要である。アルミニウム合金の表面には、不活性な不働態皮膜が存在する ため、剥離・膨れ等の密着不良<sup>1)</sup>を避けるには、適切な前処理を行い、アルミニウム合 金の活性表面にめっき皮膜を形成させることが必要である。一般的な前処理は、脱脂・ 活性化(酸性もしくはアルカリ性水溶液による表面層溶解ならびにスマット除去)・亜 鉛置換(ジンケート)であり、めっき皮膜の密着性を向上させるには、1回目の亜鉛置 換後、亜鉛置換皮膜を酸洗によって溶解除去した後、2回目の亜鉛置換を行うことが有効 <sup>2)</sup>である。めっき方法として、無電解Ni-Pめっき<sup>3)、4)</sup>を用いる場合、既報<sup>5)、6</sup>より、亜鉛 置換において亜鉛が過多に析出すると、めっき初期において皮膜の形成と同時に亜鉛が 溶解し、水素ガスが発生する。このため、めっき皮膜-基板界面に多数の空隙が残留し、 これが破壊の起点となって、めっき皮膜の密着強度が低下すると考えられる。つまり、 亜鉛の析出については、アルミニウムの不働態化を抑制するとともに、水素ガスの発生 を抑制するための最適量に制御することが要求される。

本節では、輸送機器の軽量化対象部位として鋳造ホイールに注目し、従来プロセスよりも高い生産性と意匠性を得るために開発した新規鋳造用合金<sup>7)、8)</sup>について、防食性・ 光輝性付与工程で重要な無電解 Ni-P めっきを例に挙げ、合金中の第2 相粒子の存在状態 (以下「微細組織」と表記)が表面特性に与える影響を述べる。以下、特に断らない限 り、無電解 Ni-P めっきならびに無電解 Ni-P めっき皮膜を「めっき」ならびに「めっき 皮膜」と表記する。

### 3-1-2. 実験方法

Fig.3-1 は、輸送機器ホイール向け鋳造用アルミニウム合金の微細組織ならびに研磨面断面の模式図である。ホイール製造方法として鋳造を用いることで、鍛造に比べて設計の自由度が高まるが、軽量化を実現するためには、高い流動性によって鋳造欠陥が抑制され、製品が適切な機械的特性を有することが必要である。現在、一般的な鋳造ホイールに用いられている合金は JIS AC4CH(7%Si-0.35%Mg)<sup>9</sup>であり(以下、%は mass%)、Fig.3-1-1(a)が示す様に、初晶アルミニウムと共晶部によって構成される。Si は、溶融状態での流動性を高めるとともに、凝固後は強化粒子として機的特性の向上に寄与する。

光輝性を付与するためには、まず合金表面を平滑にする必要があり、Si相は化学的に 不活性で、化学研磨・電解研磨による平滑化が極めて困難であるため、機械研磨が行わ れる。しかし、アルミニウムとSi相の硬さが大きく異なり、機械研磨面には凹凸が形成 される(Fig.3-1-1(b))ことから、合金表面にめっきを行うのみでは、めっき皮膜表面に凹 凸が残留するため、良好な光輝性が得られない。めっき皮膜表面に光輝性を付与するた めには、まずバフ研磨・前処理・活性化・亜鉛置換'・下地めっき(無電解Ni-Pめっき、 電解ニッケルもしくは電解銅)に続いて、厚さ数十µmの電解銅めっきが施される。この 表面には、上記の凹凸が存在するため、銅めっき皮膜表面に再度機械研磨を行って平滑 化し た後、多層めっき(電解銅・電解ニッケル等)と仕上げめっき(電解クロム)を行うこ とで、良好な光輝性が得られる。この工程には多くの費用と時間が必要であるとともに、 化学的に不活性なSi相とめっき皮膜とが密着しないため、めっき皮膜の膨れ・剥離等が 起こりやすく、外観不良による歩留り低下が問題となっている。

一方、著者らが開発した合金は、鋳造用アルミニウム合金JIS AC7A(4.5%Mg)に亜鉛を 添加したものであり、AC7Aに比べて流動性が改善されるとともに、溶体化・時効によ る機械的特性の制御が可能である。Fig.3-1-1(C)は、その微細組織の模式図であり、不純 物由来の比較的粗大な金属間化合物(Al-Fe,Al-Ni系金属間化合物)ならびに時効によって 形成される微細強化粒子が合金中に存在する。機械研磨面は、Fig.3-1-1(d)が示す様に平 坦で、高い光輝性を示すとともに、不活性相が存在しないことから、電解研磨・陽極酸 化・めっき等が容易で、従来法と比較し、高い生産性ならびに意匠性が期待出来る。

3-1-2-1. 試料作製条件および熱処理条件

AC7A への亜鉛添加量を2.8%とし、鋳鉄製金型鋳造で棒状(断面20mm×40mm 長さ200mm)試験片を作製した。以後、この合金を「Al-Mg-Zn系合金」と表記する。鋳造ままの Al-Mg-Zn に対して、溶体化(静止大気中,703K-21.6ks)後、直ちに試料を水冷し、28.8ksの時効を行った。時効温度は393、433、473Kのいずれかであり、時効後は直ちに試料を水冷した。以後、上記の各温度で時効した試料をそれぞれ「A393」「A433」「A473」と表記し、溶体化-水冷のみの試料については「S」と表記する。

**Fig.3-1-2**は、S、A393、A433、473 材の微細組織を示す透過電子顕微鏡明視野像である。S 材(**Fig.3-1-2**(a))ならびにA393 材(**Fig.3-1-2**(b))では、転位が見られるのみであるのに対して、A433(**Fig.3-1-2**(c))では数十 nm の析出物が観察され、A433

(**Fig.3-1-(d)**)にはA433 材の場合よりも発達した、数百 nm の析出物が多数存在する。 X線回折強度プロファイルならびに電子線回折図形から、A433 材ならびにA473 材で観 察された析出物はT-Al<sub>2</sub>Mg<sub>3</sub><sup>10,11</sup>と同定された。

#### 3-1-2-2. 前処理および亜鉛置換処理

上記各試料について、炭化ケイ素耐水研磨紙ならびにダイヤモンド砥粒(粒径1µm) による鏡面研磨を行い、これを評価面として下記の前処理ならびにめっきを行った。め っき前処理として、実用アルミニウム合金に対する評価で用いた既報<sup>5,0</sup>の条件に従い、 脱脂・活性化・亜鉛置換を行った。不働態皮膜を溶解除去するための活性化には、硝酸 とフッ酸の混合液を用い、亜鉛置換については1回目の亜鉛置換の後、1回亜鉛置換試料 を硝酸水溶液に浸漬して亜鉛置換皮膜を除去し、2回目の亜鉛置換を行った。以後、これ らの処理を「1回亜鉛置換」、「2回亜鉛置換」と表記する。

Fig.3-1-3は、Al-Mg-Zn系合金の研磨面ならびに活性化後の反射電子像である。Fig.3-1-3 (a)、(b)より、S材では不純物由来の金属間化合物が活性化によって選択的に溶解 し、腐食孔が形成される。A473材では、不純物由来の金属間化合物に加え、時効析出し たT-Al<sub>2</sub>Mg<sub>3</sub>が選択溶解される。Fig.3-1-3 (c)、(d) およびFig.3-1-4は、亜鉛置換を行っ たS材ならびにA473材の表面形態(BEI)である。時効条件ならびに亜鉛置換回数によら ず、薄く均一な亜鉛置換皮膜が形成される。ここでは特にデータを示さないが、A393材 ならびにA433材についても、上記と同様であった。亜鉛もしくは銅を含むアルミニウム 合金では、亜鉛置換を行った際に薄く均一な亜鉛置換皮膜が形成される<sup>5、6、12</sup>ことから Al-Mg-Zn系合金においても、合金に含まれる亜鉛が亜鉛置換皮膜の形成に影響すると考 えられる。亜鉛置換反応の素過程は、強アルカリ性亜鉛置換液への不働態皮膜の溶解、 金属アルミニウムが露出した部分でのアルミニウムの溶解(酸化反応による電子の放出) および亜鉛の析出(還元反応による電子の消費)である。不働態皮膜が不均一に形成さ れている場合、合金表面各点での金属アルミニウム溶解開始に注目すると、場所によっ て溶解開始時刻が異なるため、亜鉛の析出形態が不均一となる。アルミニウム合金が亜 鉛を含む場合、不働態皮膜が亜鉛置換液に対して速やかに溶解すると考えられ<sup>5、6、12</sup>、 時効条件・亜鉛置換回数によらず、合金表面全体でほぼ同時に金属アルミニウムが露出 する。これにより、合金表面が速やかに亜鉛で被覆され、亜鉛置換反応が停止するため、 薄く均一な亜鉛置換皮膜が得られるのであろう。

## 3-1-3. 結果および考察

## 3-1-3-1. めっき皮膜の密着性

上記の前処理を行った各基板を直ちにめっき液に浸漬し、平均厚さ20µmのめっき皮膜 を得た。めっき皮膜の密着性評価では、鋼製刃物を用いてめっき皮膜表面から基板に至 る切込を導入し、これを起点にめっき皮膜を剥離させ、剥離面(基板側・皮膜側)の観 察・元素分析を行った。Fig.3-1-5は、S材にめっきを行った場合の剥離面観察・面分析結 果であり、基板側とめっき皮膜側は同一領域となっている。観察・面分析には、電界放 射型電子プローブマイクロアナライザー(FE-EPMA)を用いた。

## 3-1-3-2. 表面·断面観察結果

Fig.3-1-5(a)、(b)より、不純物由来の金属間化合物が溶解することで形成された腐食孔にめっき皮膜が残留し、その領域ではめっき皮膜の主成分であるニッケルが検出される。 めっき皮膜側(Fig3-1-5(c)、(d))では、腐食孔に入り込んだめっき皮膜の表面でアルミニ ウムが検出される。S材の場合、めっき皮膜の密着強度は実用アルミニウム合金の場合<sup>5)、 <sup>6</sup>に比べて低くA1100、A2017、A5052では、2回亜鉛置換を行うことで密着強度が極め て高くなり、めっき皮膜の剥離が不可能となるのに対して、Al-Mg-Zn系合金のS材では、 母相へのめっき皮膜の付着が確認されず、母相表面に形成されためっき皮膜へのアルミ ニウムの付着も認められない。つまり、S材の場合、不純物由来の金属間化合物が溶解 して形成された腐食孔内壁のみが、めっき皮膜に対して良好な密着性を示し、めっき皮 膜の密着強度は、腐食孔の数と形状によって決定される。しかし、この腐食孔が表面積 に占める割合はわずかであることに加え、合金本来の防食性を低下させないためには、 不純物由来の金属間化合物を減少させることが要求されるため、この腐食孔を利用した 密着強度の改善は、実用上極めて困難である。</sup>

Fig.3-1-6は、A473材上のめっき皮膜を剥離した場合の剥離面観察・面分析結果である。 不純物由来の金属間化合物腐食孔におけるめっき皮膜の挙動は、S材の場合と同様であ るが、剥離面の基板側でニッケルが多量に検出され、特にこれらは時効析出した T-Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>の腐食孔内に存在する。ここでは特にデータを示さないが、剥離面の基板側 で検出されるニッケル量は、時効温度の上昇とともに増加した。めっき皮膜の密着強度 は、S材の場合と比較して大きく向上したが、皮膜側でのアルミニウムの検出量 (Fig.3-1-6(d))は、S材の場合(Fig.3-1-5(d))と同様にわずかであり、これは腐食孔内面とめ っき皮膜の密着性が良好で、剥離時にめっき皮膜内部の破壊が起こったためである。

Fig.3-1-3(d)より、T-Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>腐食孔の形状は単純で、断面観察によっても基板内部における孔の顕著な拡大は見られず、孔の深さはT-Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>粒子寸法程度であることから、形状のみに起因するアンカー効果は、密着強度の顕著な向上に寄与していないと考えられる。

Fig.3-1-7は、Al-Mg-Zn系合金の微細組織・不働態皮膜形成・めっき皮膜の密着についての模式図である。Fig.3-1-7(a)は、溶体化-水冷後のS材を表し、時効によってT-Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>

が析出したもの(Fig.3-1-7(b))に活性化を行うことで、多数の腐食孔が形成される (Fig.3-1-7(c))。この腐食孔内面に形成される不働態皮膜((ii))の性質は、母相表面に 形成されるもの((i))のそれと異なり、母相の表面はめっき皮膜の密着に対して不 適切な状態である一方、腐食孔内面の状態はめっき皮膜の密着に適していると予想され るが、その詳細については今後の研究課題としたい。既報<sup>5)、6</sup>より、実用アルミニウム 合金の中で、Al-Mg-Zn-Cu系合金(A7075)については、めっき皮膜の密着強度が他合金

(A1100、A2017、A5052)に比べて著しく低い。このことから、アルミニウム合金中の 亜鉛ならびにマグネシウムが、亜鉛置換ならびにめっきに与える影響を詳細に研究する ことは、本稿のAl-Mg-Zn系合金において、更に良好なめっき皮膜密着性を得るために必 要と考えられる。

3-1-4. 結 言

本節では、輸送機器ホイール向け鋳造用Al-Mg-Zn系合金について、微細組織変化が無 電解Ni-Pめっき皮膜の密着性に与える影響を述べた。その結果は、下記の通りである。

(1) 鋳造用Al-Mg-Zn系合金(AC-7A)に2.8%の亜鉛を添加した合金では、溶体化-水冷の後に時効を行うことで、大きさ数十~数百nmの強化T-Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>が析出する。

(2) めっき前処理の活性化によって、T-Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>が優先溶解し、基板表面には多数の腐 食孔が形成される。活性化後の亜鉛置換では、時効条件ならびに亜鉛置換回数が亜鉛置 換皮膜の形態に顕著な変化を与えず、全ての条件について、薄く均一な亜鉛置換皮膜が 形成される。

(3) 亜鉛置換後に無電解Ni-Pめっきを行う際、母相表面とめっき皮膜の密着強度は低い が腐食孔内T-Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>面とめっき皮膜の密着性は高く、時効析出が密着強度に与える影 響が極めて大きい。Al-Mg-Zn系合金をホイールとして使用する際には、必ず時効が施さ れることから、本合金はめっきによる光輝性付与に好適の材料である。

# 参考文献

- 1) M.Yabe: j.Surf.Fin.Soc.Jpn 48 (1997) 522-529(in Japanese).
- 2) F.Keller.andW.G.Zelley: J.Electrochemsoc 97(1950)143-151.
- 3) A.Brenner.andG.E.Riddell.: Proc.Am.Electroplaters. (1947) 34.
- 4) G.Gutzeit: Plating.47 (1960) 63-70.
- 5) K.MurakamiM.Hino, R.Fukuhara and T.Kanadani: Mater.Trans.51 (2010)78-84.
- 6) K.Murakami, M.Hino, R.Furukawa and T.Kanadani: J.JILM60 (2010) 81-87(in Japanese).
- 7) S.Kawai and H.Kanetuki: Alutopia, 41(2011) 9-16(in Japanese).
- 8) S.Kawai and H.Kanetuki.M.Hino and K.Murakami: (2011) Internationalpatent

WO/2011/111816.

- 9) Ed.T.Motegietal: Aruminiumu-no-seihin-toseizo-gijutsu, Japan Institute of Light Metals, (2011)371 -375 (in Japanese).
- 10) L.F.Mondolfo : Met.Rev.16 (1971) 95-124.
- 11) F.Laves, K.Lohberg and H.Witte: (1935). Metallwirt. 14.
- 12) K.Murakami, M.Hino, M.Ushio, D.Yokomizo and T.Kanadani:Mater.Trans.54 (2013) 199-206.

図・表



**Fig. 3-1-1** Schematic illustration of the microstructures of Al-Si and Al-Mg-Zn casting alloys ((a) polished surface of Al-Si, (b) cross section of (a), (c) polished surface of Al-Mg-Zn, (d) cross section of(c)).



**Fig. 3-1-2** microstructure of Al-Mg-Zn alloy (TEM bright-field images, (a) solution-treated, (b) Aged at 393K for28.8ks, (c) aged at 433K for 28.8ks, (d) aged at 473K for 28.8ks).



Fig. 3-1-3 Surface morphology of Al-Mg-Zn alloy after the polishing and the activation
(Backscattered electron images (BEIs), (a) polished surface of the solution-treated specimen,
(b) activated surface of the solution-treated specimen, (c) polished of the specimen aged at 473K for 38.8ks, (d) activated surface of the specimen aged at 473K for 28.8ks).



**Fig. 3-1-4** Surface morphology of Al-Mg-Zn alloy after the zincate treatments (BEIs, (a) after the first zincate treatment of the solution-treated specimen, (b)after the second zincate treatment of the solution-treated specimen, (c) after the first zincate treatment of the specimen aged at 473K for 28.8ks, (d) after the second zincate treatment of the specimen aged at 473K for 28.8ks).



**Fig. 3-1-5** Surface morphology and characteristic X-ray map of the peeled surface (electroless Ni-P plating was performed after the second zincate treatment for the solution treated specimen, (a) BEI of the substrate, (b) Ni $K\alpha$  map of (a),(c) BEI of the plated film,(d) Al $K\alpha$  map of (c)



**Fig. 3-1-6** Surface morphology and characteristic X-ray map of the peeled surfaces (electroless Ni-P plating was performed after the second zincate treatment for the specimen aged at 473K for 28.8ks (a) BEI of the substrate, (b) Ni $K\alpha$  map of (a), (c) BEI of the plated film, Al $K\alpha$  map of (c)).



**Fig. 3-1-7** Shematic illustration of the microstructure, surface state and surface treatment of Al-Mg-Zn alloy ((a) after solution treatment, (b) after activation, (d) after electroless Ni-P plating).

# **3-2 Al-Mg-Zn** 合金および AC4CH 合金鋳物への 無電解 Ni-P めっきに対する金属組織の影響

<u>3-2-1. 緒 言</u>

自動車産業では、低炭素社会の実現に向けた CO<sub>2</sub>排出量の削減に対応するため、 車体の軽量化が最重要課題のひとつとなっている。そのため、これまで多用されて きた鉄鋼材料から軽量化が期待できるアルミニウム材料への転換が進んでおり、自 動車産業でのアルミニウム材料へのニーズは、年々高まっている<sup>1)</sup>。特に自動車用 ホイールについて、スチール材からアルミニウム材への代替が著しい<sup>2)</sup>。

アルミニウム製ホイールは加工性に優れていることから、自動車のエクステリア を際立たせるために効果的で、特に装飾めっきによる鏡のような光輝ホイールへの ニーズが高い。しかし、アルミニウム合金は化学的に活性で、強固な酸化皮膜で覆 われるため、直接めっきを行った場合、密着性を確保することが難しい<sup>3</sup>。

現状、鋳造用アルミニウムホイールの素材には、強度および鋳造性に優れた AC4CH-T6 材(Al-Si-Mg 系)<sup>4)</sup>が多用されている。この鋳造アルミニウムホイールに対して、エク ステリア向上のため、装飾めっきが施され、鏡のような外観が実現されている。しかし、 AC4CH-T6 材は共晶 Si がデンドライト状に偏析しており、光輝性を得るためには多層め っきを必要とする。また、ブツ・膨れ・シミなどのめっき不良が発生しやすく、コスト 上昇と生産性の低下を招いている<sup>5)</sup>。AC4CH 材には湯流れ性および強度向上を目的に、 Si が添加されているが、Si は化学的に安定なため、前処理による除去が困難で、めっき 性を著しく低下させている。そのため、めっきに適した新たな鋳造用アルミニウム合金 の開発が望まれている。これまで著者らは、AC4CH-T6 材と同等以上の強度を有する鋳 造用アルミニウム合金を開発した<sup>5、6</sup>。この開発材料(Al-Mg-Zn 合金)は、AC4CH-T6 材よりも偏析などの組織の不均一性が大幅に抑制されているため、めっき性の向上が期 待できる。

本節では、めっきに適した新規鋳造用アルミニウム合金の開発を目的とし、AC4CH 材および新たに開発された開発材へのめっき処理に対する金属組織の影響を調査し、め っきへの適合性を検討した。

#### 3-2-2. 実験方法

実験には、現状の鋳造アルミニウムホイールに適用されている AC4CH 材および開発 材を使用した。化学組成を Table3-2-1 に示す。AC4CH 材および開発材は、溶湯を金型 に鋳造(注湯温度:1003K、金型形状:舟形試験片<sup>7)</sup>、鋳込み重量:約500g、金型温度: 523K)後、既報<sup>8)</sup>に従い、溶体化+時効処理(AC4CH 材は T6 処理)を行った。

各試料に対してめっき前処理(バフ研磨、アルカリエッチング、デスマット、亜鉛置換処理)を施した後、無電解 Ni-P めっき(膜厚 10µm)を行い、めっき性を評価した。 前処理条件およびめっき条件をそれぞれ Table 3-2-2、Table 3-2-3 に示す。バフ研磨後な らびにめっき後の表面光沢度をデジタル光沢計((株)村上色彩技術研究所製,(GM-3D)) によって測定した。また、めっき前処理の各工程について、FE-EPMA による表面観察 および元素分析、レーザ顕微鏡による表面形態観察を行った。

## 3-2-3. 結果および考察

<u>3-2-3-1. めっき前処理による表面形態変化</u>

Fig.3-2-1 には、AC4CH-T6 材および開発材のミクロ組織を示す。AC4CH-T6 材は、鋳造に起因するデンドライト組織が認められる一方、開発材には明瞭なデンドライト組織は認められない。このように両者は同じ重力鋳造法によって作製されているが、ミクロ組織が大きく異なっていることがわかる。

Fig.3-2-2には、同一条件でバフ研磨を行ったAC4CH-T6材および開発材の外観を示す。 AC4CH-T6材における背景の格子は、開発材のそれよりも不鮮明に写し出されている。 光沢度は、それぞれ、AC4CH-T6材が544%であるのに対して、開発材は714%であった。 このように開発材は、バフ研磨によってAC4CH-T6材よりも優れた光輝性を示すという 特徴を有している。このAC4CH-T6材での光輝性の低下は、Fig.3-2-1に示した金属組織 に基づく。即ち、AC4CH-T6材では共晶Si部がマトリックスのアルミニウム固溶体より も硬い。そのため、バフ研磨において軟らかいアルミニウム固溶体部が優先的に研磨さ れ、硬い共晶Si部が凸になることに起因する<sup>8</sup>のであろう。

Fig.3-2-3 には、AC4CH-T6 材および開発材に対して各前処理を行った表面の二次電子像を示す。バフ研磨後、AC4CH-T6 材および開発材は、ともにバフ研磨による傷が観察される。AC4CH-T6 材では共晶 Si が観察され、その部位が僅かに凸になっているが、両者に明瞭な差異は認められない。バフ研磨後のアルカリエッチングにおい AC4CH-T6

材では、マトリックスのアルミニウム固溶体が優先的に溶解する。しかし、化学的に安定な Si はエッチングの影響を受けにくい。そのため、バフ研磨と比較し、共晶 Si 部の 凸が促進された。一方、開発材では、Si を含有しないため、均一な表面が形成されていた。

ここで、表面形態がより明確に把握できるレーザ顕微鏡による三次元表面形態測定結 果を Fig.3-2-4 に示す。二次電子像(Fig.3-2-3)において明瞭な差異が認められなかった バフ研磨表面について、AC4CH-T6材では共晶Si部が凸になっていることがよくわかる。 また、アルカリエッチングにおいて、AC4CH-T6材ではアルミニウム固溶体部位での優 先的な溶解により、共晶Si部の凸が促進されていることもわかる。一方、開発材は、バ フ研磨によって極めて平滑な表面が生成される。さらにアルカリエッチングによって、 その表面は僅かに荒れるものの、AC4CH-T6材のそれよりも平滑であることがよくわか る。Fig.3-2-5 には、開発材のアルカリエッチングによる表面状態を拡大観察した結果を 示す。バフ研磨に基づく傷とともに、数多くの微細なピットが観察される。Al-Mg-Zn 系合金である開発材は、熱処理型合金として溶体化・時効処理によるT相(Al2Mg3Zn3) の析出によって強度が向上する<sup>8)</sup>。透過電子顕微鏡観察による開発材の微細組織を Fig.3-2-6 に示したが、数百 nm のT 相が分散析出していることがわかる。ここで観察さ れた微細なピットは、その大きさからアルカリエッチングでのT 相の脱落によって生じ ていると推測される。なお、アルカリエッチング後のデスマットでは、AC4CH-T6 材お よび開発材ともにアルカリエッチングの表面と大きな差異は認められなかった。

次に、亜鉛置換処理後の形態について、AC4CH-T6材では、デスマットと同様、共晶 Si部が凸になっている。一方、開発材の表面はAC4CH-T6材のそれと比較し、平滑であった。このように硬質で化学的に安定なSiを含まない開発材は、各めっき前処理において、均一な研磨あるいは化学反応が生じ、容易に平滑な表面を得ることができる。

3-2-3-2. 亜鉛置換処理における亜鉛の析出状態

アルミニウム合金に対するめっきについて、亜鉛置換処理はめっき皮膜の密着性を確保するために極めて重要な前処理である。その際、亜鉛の析出状態がめっき皮膜の密着性に著しく影響を及ぼすことが明らかになっている<sup>9</sup>。

ここでは亜鉛置換処理による亜鉛の析出状態を明らかにするため、各試料に対して FE-EPMAによる元素マッピングを行った。得られた結果を Fig.3-2-7 に示す。AC4CH-T6 材では、共晶Si上での亜鉛の析出がマトリックスであるアルミニウム固溶体でのそれよりも抑制されていることがわかる。これはSiが強アルカリである亜鉛置換溶液中において化学的に安定であり、Siの溶解とそれに伴う亜鉛析出が生じないことに起因する。なお、このような亜鉛の不均一な析出は、その後のめっきにおいても不均一な析出を生じさせる要因となる。一方、開発材では、金属組織がAC4CH-T6材よりも均一でSiを含まないため、亜鉛はほぼ均一に析出している。そのためAC4CH-T6材で生じるふくれ等のめっき不良が抑制され、めっき性が向上する。

#### 3-2-3-3. 無電解 Ni-P めっきと光輝性

Fig.3-2-8 には、各試料に対して、亜鉛置換処理後に無電解 Ni-P めっきを膜厚 10µm 施 した外観を示す。開発材での背景の格子は、AC4CH-T6 材でのそれよりも鮮明に写し出 されている。光沢度は、それぞれ、開発材へのめっきが 573% であるのに対して AC4CH-T6 材のそれは 402% であった。このように開発材は、無電解 Ni-P めっき後、AC4CH-T6 材 よりも優れた光輝性が得られる。

無電解めっきの特徴として、下地の形状に沿った皮膜が形成される<sup>10</sup>。そのため、下 地が平滑な場合、めっき表面も平滑で、光輝性に優れためっき外観を得ることができる。 AC4CH-T6材では、バフ研磨後の光沢度は544%であったが、無電解 Ni-P めっき後、402% にまで低下した。これは、Fig.3-2-4 に示しためっき前処理によって化学的に安定な共晶 Si 部でのエッチングが抑制され、その部分がさらに凸なることに起因すると推測される。 一方、開発材では、めっき前処理において、ほぼ均一なエッチングが行われるため、光 輝性に富んだめっき表面を得ることができると思われる。

Fig.3-2-9 には、めっき後の各試料表面のレーザ顕微鏡による三次元表面形態測定結果 を示す。AC4CH-T6 材へのめっき表面は、開発材のそれよりも凹凸が激しいことがわか る。前述の通り、AC4CH-T6 材へのめっきにおける光輝性の低下は、めっき前処理によ る表面の凹凸形成に基づくことが判明した。

一般にAC4CH-T6材による鋳造アルミニウムホイールへの装飾めっきでは、下地に装飾用硫酸銅めっき<sup>11)</sup>が施されている。装飾用硫酸銅めっきの特徴として、レベリング性に優れていることがあげられる。AC4CH-T6材へのめっき前処理による表面の凹凸は、硫酸銅めっきを数十µm以上施すことにより、平滑にすることは容易である。しかし、多層めっきになるため、コスト上昇に繋がるとともに、銅の枯渇も懸念されている。一

方、開発材では、めっき前処理後も平滑な表面が得られることから、硫酸銅めっきの薄 膜化あるいは省略も可能になり、めっき時間の短縮とそれによるコスト抑制が期待でき る。さらに省資源、省エネルギーにも貢献できる。

Fig.3-2-10には、各試料に対して、既報<sup>8</sup>に示した電解研磨を行った後、亜鉛置換処理 および無電解 Ni-P めっきを膜厚 10µm 施した試料の外観を示す。AC4CH-T6 材へのめっ きでは、背景の格子が僅かに写し出されている程度で、光輝性の低下が著しい。これは、 電解研磨による Si 部での不均一溶解に起因している。一方、開発材へのめっきでは、背 景の格子が鮮明に写し出されており、光沢度は、市販の装飾めっきアルミニウムホイー ル (AC4CH-T6 材) と同程度であった。これは電解研磨により、開発材の光沢度が 750% にまで向上するため<sup>8</sup>、その後のめっき表面も優れた光輝性を示す。このように光輝性 が要求される製品に対し、開発材を用い、めっき前処理として電解研磨を適用すること は極めて有益なプロセスである<sup>12</sup>。

## <u>3-2-4. 結言</u>

AC4CH 材および開発材へのめっき処理に対する金属組織の影響を調べ、めっきへの 適合性を検討した結果、以下の結論を得た。

- (1) 硬質かつ化学的に安定な Si 相を含有する AC4CH 材では、めっき前処理による機械 的な除去および化学的な溶解反応が不均一に生じる。その際、共晶 Si 部が凸になり、 表面に凹凸が形成され、その表面の荒れがめっき後の光輝性を低下させる要因とな る。そのため、光輝性が要求される場合には多層めっきやめっきの厚膜化が必要に なる。一方、Si を含有しない開発材は、AC4CH 材よりも均一な組織を有するため、 めっき前処理における機械的な除去および化学的な反応が均一に生じる。結果的に 鋳造材であるにもかかわらず、平滑な表面が得られ、めっき後も良好な光輝性を示 す。そのため、AC4CH 材では必要とされる硫酸銅めっきの薄膜化あるいは省略も可 能になり、めっき時間の短縮とそれによるコスト抑制が期待できる。さらに省資源, 省エネルギーにも貢献できる。
- (2) アルミニウム合金へのめっきに最も重要な前処理である亜鉛置換処理について、 AC4CH 材では、Si 相上での亜鉛の置換反応が抑制される。この不均一な亜鉛置換皮 膜は、その後のめっきにおいて悪影響を及ぼす。一方、開発材では、置換析出する 亜鉛がほぼ均一に析出するため、AC4CH 材よりも良好なめっき性が得られる。

(3) 開発材に対するめっき前処理での電解研磨の適用は、めっきの光輝性を向上させ、 AC4CH 材への装飾めっき(多層めっき)と同程度の光輝性を示した。 参考文献

1) H. Horikawa : J.JILM 58 (2008) 259.

The Japan Aluminum Association-wheel Committee: Aluminum Wheels Statistics 24 (2010)
 20.

 M. Hino, K. Murakami and T. Kanadani: "Kagaku to Kougyou (science and engineering)" 85 (2011) 1-12.

4) JIS H 5202: Aluminium alloy castings

5) S. Kawai and H. Kanetsuki: Alutopia 41 (2011) 8.

6) Patent application (2010)-56677: S. Kawai, H. Kanetsuki, M. Hino, K. Murakami.

7) ``Casting technology series 6 Light alloy casting—Production technology of die-cast (revised edition)'', edited by Light Metal Production Manual Editorial Board, Sokeizai Center (2000) 27.

8) M. Hino, K. Murakami, N. Nagata, C. Ibata, H. Kanetsuki, S. Kawai: "Chuzou Kougaku (foundry engineering)" 84 (2012) 438.

9) M. Hino, K. Murakami, Y. Mitooka, K. Muraoka, R. Furukawa and T. Kanadani:Materials Transactions 50 (2009) 2235.

10) M. Hino and K. Murakami (co-authored): "Mudenkai Mekki Gijyutsu (electroless plating technology)", S&T Publishing Inc., (2012) 177.

11) Gendai Mekki Kyouhon (Modern plating manual), edited by Denki Mekki Kenkyukai (electroplating study group), Nikkan Kogyo Shimbun, Ltd (2011) 190.

12) Patent application (2012)-107966: N. Nagata, C. Ibata, M. Hino, K. Murakami.

図・表





**Fig.3-2-1** Optical microstructures of various specimens (a) AC4CH-T6 casting (b) Developed alloy casting



10**m**m

**Fig.3-2-2** Appearance of the various specimens after buffing. (a) AC4CH-T6 casting (b) Developed alloy casting



20µm

Fig.3-2-3 Secondary electron images of specimens after the various pretreatments.



**Fig.3-2-4** Three-dimenSional surface morphologies of various treated specimens obtained by the laser microscope.



Fig.3-2-5 Secondary electron image of the developed casting after alkali etching.



200 nm

Fig. 3-2-6 TEM image of the developed casting after the solution heat treatment and aging treatment.



**Fig.3-2-7** Secondary electron images and X-ray maps for aluminum, silicon ,magnesium and zinc by FE-EPMA analySis for various specimens after the zincate treatment.




**Fig.3-2-8** Appearances of the various specimens after the electroless Ni-P plating. (a) AC4CH-T6 casting (b) Developed alloy casting



**Fig.3-2-9** Three-dimensional surface morphologies of the various specimens after the electroless Ni-P plating obtained by the laser microscope.(a) AC4CH-T6 casting (b) Developed alloy casting



10**m**m

**Fig.3-2-10** Appearances of the various specimens after the electroless Ni-P plating with electropolishing pretreatment.(a) AC4CH-T6 casting (b) Developed alloy casting

| Alloy              | Si   | Mg   | Zn   | Fe   | Cu   | Ni   | Ti   | Pb   | Sb   | Mn | Cr | В    | Be    | Al   |
|--------------------|------|------|------|------|------|------|------|------|------|----|----|------|-------|------|
| AC4CH              | 6.77 | 0.35 | 0.01 | 0.11 | -    | 0.01 | 0.12 | 0.01 | 0.14 | -  | -  | -    | -     | bal. |
| Developed<br>alloy | 0.08 | 4.73 | 3.03 | 0.18 | 0.06 | -    | 0.10 | -    | -    | -  | -  | 0.05 | 0.002 | bal. |

 Table 3-2-1 Chemical compoSition of various specimens (mass%)

| Pretreatment                               | Buffing          | Alkaline<br>etching | Desmut               | Zincate treatment<br>(Double treatment) |  |
|--------------------------------------------|------------------|---------------------|----------------------|-----------------------------------------|--|
| Procedure                                  | #320/<br>Buffing | -                   | -                    | -                                       |  |
| Composition of<br>electrolytic<br>solution | -                | NaOH:50g/L          | 50% HNO <sub>3</sub> | Cmmercial<br>solution<br>+ additive     |  |
| pН                                         | -                | 14                  | 0                    | 14                                      |  |
| Temperature (K)                            | -                | 323                 | 293                  | 293                                     |  |
| Treatment time (s)                         | -                | 10                  | 30                   | 30                                      |  |

 Table 3-2-2 Pretreatment process conditions.

| Plating type                         | Electroless Ni-P plating |  |  |
|--------------------------------------|--------------------------|--|--|
| Composition of electrolytic solution | Cmmercial solution       |  |  |
| рН                                   | 6.5                      |  |  |
| Temperature (K)                      | 328                      |  |  |
| Treatment time (s)                   | 1800                     |  |  |

# Table 3-2-3 Plating conditions.

# 3-3 アルミニウム合金への亜鉛置換・無電解 Ni-P めっきに対する 合金元素と水素ガス発生の影響

## <u>3-3-1. 緒言</u>

アルミニウム合金は、輸送・電子機器の軽量化に不可欠の材料であり、微細組織制御 による強度・成形性向上とともに、表面制御による性能改善・機能付与が要求されてい る。特に、耐食性・耐摩耗性・外観の改善ならびに電磁気特性の付与については、湿式 処理改質が一般的に用いられ、その方法として、電解・無電解めっきが挙げられる。た だし、アルミニウム合金の表面には、化学的に安定で緻密な不働態膜が形成されるため、 上記方法による膜形成に先立って、酸性もしくはアルカリ性水溶液による表面の活性化 とともに、不働態化を抑制し、活性状態を維持するための処理が必要である。このため の方法として、一般的に「亜鉛置換」と呼ばれる処理が行われ、強アルカリ性の水溶液 中に存在する亜鉛酸イオンと、金属アルミニウムの置換反応によって、合金表面を亜鉛 の膜で被覆し、アルミニウムの不働態化を抑制した状態で、めっきが行われる。最近、 村上らは、アルミニウム合金への亜鉛置換・無電解 Ni-P めっき(以後「めっき」と表記) を行った際、亜鉛置換前の活性化条件ならびに合金中の添加元素(マンガン・鉄・銅・亜 鉛)が、亜鉛置換膜の形成に大きく影響することを報告している<sup>1),2)</sup>。本節では、アルミ ニウム合金における代表的な添加元素である亜鉛・マグネシウム・Si が、亜鉛置換・め っきに与える影響とともに、処理時の水素ガス発生について検討した結果を述べる。

### 3-3-2. 実験方法

3-3-2-1. 試料作製および熱処理条件

亜鉛置換・めっき用のアルミニウム合金基板には、マグネシウムもしくはSiを2.0at% 含む二元合金と、亜鉛ならびにマグネシウムを含む三元合金を使用した。三元合金では、 亜鉛量を2.0at%とし、マグネシウム量を0.2at%もしくは4.5at%とした。ここで、マグネシ ウム量4.5at%は、前節(3-3)で扱った輸送機器ホイール向け鋳造用アルミニウム合金の マグネシウム量と同等である。以後、上記の合金を、それぞれ"Al-2Mg"、"Al-2Si"、

"Al-2Zn-0.2Mg"、"Al-2Zn-4.5Mg"、と表記する。金型鋳造<sup>2)</sup>で上記合金鋳塊を得た後、 静止大気中での均質化を行った。

#### 3-3-2-2. 前処理および亜鉛置換処理

Al-2Mg, Al-2Si, Al-2Zn-0.2Mg, Al-2Zn-4.5Mgについて、均質化温度はそれぞれ573、823、703、703Kであり、全て173ks等温保持した後、直ちに水中で冷却した。この鋳塊を切断した後、炭化けい素耐水研磨紙ならびに粒径1µmのダイヤモンド遊離砥粒で片面に鏡面研磨を施し、研磨面を評価面として、亜鉛置換・めっきを行った。

亜鉛置換・めっきについても、既報<sup>20</sup>の手順に従い、アルカリ脱脂・硝ふっ酸による 表面活性化の後、1回亜鉛置換を行い、硝酸を用いて亜鉛を溶解除去した後、2回亜鉛置 換を行った。亜鉛置換膜の形態を観察する場合には、亜鉛析出量を増加させ、観察を容 易にするため、酸化亜鉛と水酸化ナトリウムの水溶液を亜鉛置換液として用いた。一方、 めっきを行う場合には、亜鉛の析出量を抑制し、めっき膜と基板の密着性を向上させる ため、上記の亜鉛置換液に鉄イオンを添加したものを用いた。亜鉛置換を行ったアルミ ニウム合金を、363Kのめっき液に浸漬してめっきを行うとともに、亜鉛が過多に析出し た場合の挙動を検討するため、99.5mass%亜鉛板(以後"2N-Zn"と表記)へのめっきを行 った。

2N-Zn表面の活性化には、亜鉛置換膜を溶解除去するための硝酸を用い、亜鉛置換については省略した。亜鉛置換・めっき後の試料について、表面/断面の観察・元素分析を行った。観察には、電界放射型走査電子顕微鏡を用いるとともに、断面作製にはアルゴンイオン線加工を用いた。断面の元素分析には、電子線マイクロアナライザーを用いた。

#### 3-3-3. 結果および考察

Fig.3-3-1 は,Al-2Mg、Al-2Si に対して亜鉛置換を行った場合の反射電子像(組成モード) であり、以後これを"BEI"と表記する。Al-2Mg、Al-2Si の1回・2回亜鉛置換において、 基板表面から気体が発生し続けるとともに、亜鉛が過多に析出し、脱落を繰り返した。 このため、基板に密着していない亜鉛を、アセトン中で超音波洗浄によって除去した後、 Fig.3-3-1の観察を行った。Fig.3-3-1(a)より、Al-2Mgの1回亜鉛置換では、明領域の粒子 が基板表面を部分的に被覆し、その領域は数百 nm の粒子で構成されていた。この明領 域について、特性X線分析を行った結果、亜鉛が検出されるとともに、母相からはアル ミニウム・マグネシウムが検出された。Al-2Mgの2回亜鉛置換(Fig.3-3-1(b))についても、 未被覆領域が存在し、被覆領域では、1回亜鉛置換の場合と比較して、粗大に成長した 亜鉛粒子が観察された。Al-2Si の場合、1回・2回亜鉛置換ともに、粗大な亜鉛粒子が付 着した部分と、基板露出部が観察された。Fig.3-3-1(c)(d))あるいは Fig.3-3-1(d)において、 暗領域の粒子からは、Si が検出された。

**Fig.3-3-2**は、Al-2Zn-0.2Mg、Al-2Zn-4.5Mgに対して亜鉛置換を行った場合の表面 BEI である。**Fig.3-3-2(a)(b)**より、Al-2Zn-0.2Mgの場合、アルミニウム母相の結晶方位に応じて、亜鉛の析出量は変化するものの、**Fig.3-3-1**の様な粗大な亜鉛粒子は存在せず、基板表面は薄く均一に亜鉛で被覆された。また、1回・2回亜鉛置換ともに、表面はほぼ同様の形態を示し、気体発生は確認されなかった。Al-2Zn-4.5Mg (**Fig.3-3-2(c)(d**))についても、表面形態はAl-2Zn-0.2Mg 場合(**Fig.3-3-2(a)(b**))とほぼ同様であり、気体は発生せず、鋳造時に形成された空隙の近傍においても、粗大な亜鉛は析出しなかった。

#### <u>3-3-3-1.</u>表面・断面観察結果

Fig.3-3-3 は、2N-Zn に対してめっきを 600s 間行った後の断面 BEI である。2N-Zn への めっきの際、アルミニウム合金の場合よりも激しく気体が発生し、この状況は 600s 間同 様であった.。約 5µm のめっき膜は形成されているものの、めっき膜は基板に密着して おらず、その間には亜鉛・ニッケル・リンで構成された多孔質領域が存在する。この多 孔質領域には断面作製に用いたエポキシ樹脂が充填されており、この領域におけるニッ ケルーリンの感度はめっき膜のそれよりも低い。

Fig.3-3-4 は、Al-2Zn-0.2Mg,Al-2Zn-4.5Mg に対してめっきを 60s 間行った場合の断面 BEI である。Al-2Zn-0.2Mg の場合(Fig.3-3-4(a))、めっき膜と基板の間には、特に空隙が 存在しない一方、Al-2Zn-4.5Mg の場合(Fig.3-3-4(b))には、めっき膜-基板界面近傍のめっ き膜内に多数の空隙が存在した。ここでは特にデータを示さないが、5.4ks 間めっきを行 い、めっき膜の剥離を試みたところ、Al-2Zn-0.2Mg の場合にはめっき膜の剥離が極めて 困難であり、剥離部では基板の延性破壊を示すディンプル模様が観察された。一方、 Al-2Zn-4.5Mg の場合、めっき膜の剥離が容易であるとともに、Mg 添加量を 0.5at%まで 減少させても、めっき膜は容易に剥離した。

## 3-3-3-2. めっき皮膜の密着性と水素ガスの影響

アルミニウム合金への亜鉛置換における電極電位では、酸化反応としてアルミニウムの溶解(Al+2H<sub>2</sub>O→Al(OH)<sub>4</sub><sup>+</sup>+4H<sup>+</sup>+3e<sup>3</sup>が起こることが報告されている<sup>2)</sup>。一方、還元反応として亜鉛の析出(ZnO<sub>2</sub><sup>2+</sup>+4H<sup>+</sup>+2e<sup>-</sup>→Zn+2H<sub>2</sub>O)と水素ガスの発生(2H<sup>+</sup>+2e<sup>-</sup>→H<sub>2</sub>)が起こる<sup>4)、5)</sup>。アルミニウムの溶解によって電子が生成する際、亜鉛酸イオンが十分に供給される

ならば、その領域が亜鉛で被覆されるが、亜鉛酸イオンの供給が不十分な場合、供給速度の大きい水素イオンが優先的に還元され、基板表面では水素ガスが発生する。亜鉛酸イオンは、亜鉛置換液の沖合いから拡散によって供給されるため、主に基板表面から離れた領域で還元される。このために必要な電子は、基板表面の(Fig.3-3-1の亜鉛未被覆部)から、既に析出した亜鉛を通過して、亜鉛酸の還元サイトに移動すると考えられる。過多に析出した亜鉛は、膜状ではなく、粗大な粒子の多孔体であり、基板に密着していないため、基板表面から発生する水素ガスによって、容易に脱落する。

上記の現象は、アルミニウム合金表面に形成された不働態膜が速やかに溶解消失せず、 アノードサイトとカソードサイトの分布が不均一な場合、顕著になると考えられる。ア ルミニウム合金中の銅・亜鉛は、合金表面に生成された不働態膜の速やかな溶解消失を 促進するが、マグネシウムならびにSiは、この様な効果を示さず、水素ガスの発生が始 まると、その領域はアノードサイトとして機能し続ける<sup>2)</sup>。

Al-2Zn-0.2Mg および Al-2Zn-4.5Mg の場合(Fig.3-3-2)には、合金中に亜鉛が含まれるた め、速やかに薄く均一な亜鉛置換膜が形成され、反応が停止したと考えられる。上記の 亜鉛置換を経たアルミニウム合金がめっき液に浸漬されると、亜鉛置換膜の一部が溶解 し、電子が生成されるとともに、めっき液中のニッケルイオンがこの電子によって還元 される。また析出したニッケルを触媒として、めっき液中の次亜りん酸が酸化され、そ の際に放出された電子によって、ニッケルイオンが還元され、めっき膜が成長する。亜 鉛置換によって亜鉛が過多に析出した場合、上記の様にニッケルイオンが還元されると ともに、水素イオンが還元され、水素ガスが大量に発生する<sup>1)</sup>。亜鉛が過多に存在する 場合、めっき膜と基板の間に多数の空隙が形成され、密着強度が大きく低下することは、 2N-ZN の場合(Fig.3-3-3)からも明らかである。めっき膜で被覆されていない 2N-Zn の表 面では、亜鉛が激しく溶解し、この溶解領域がめっき膜と基板の間を進展する。このた め、既にめっき膜が形成された部分についても、めっき膜直下の亜鉛が溶解することで、 めっき膜が脱落し続けたと考えられる。Fig.3-3-3 において、めっき膜と基板の間に存在 する多孔質領域は、亜鉛の溶解にともなう水素ガスの発生と、溶解した亜鉛を含有する Ni-P 生成物の析出が同時に起こることで生じる領域と考えられる。

上記は、亜鉛が過多に析出した場合の密着性低下機構であるが、Al-2Zn-4.5Mgの場合 (Fig.3-3-2(c)(d)および (Fig.3-3-4(b))、Al-2Zn、Al-2Cu の場合<sup>2)</sup>と同様の薄く均一な亜鉛 置換膜が得られるにもかかわらず、めっき膜の密着強度は極めて低い。Fig.3-3-4(b)の空 隙は、Al-2Mg,Al-2Si の場合の様に、過多に析出した亜鉛の溶解が継続することには起因 しないものの、めっき開始直後の激しい水素ガス発生が、その空隙形成に関係すると考 えられる。この機構の詳細は不明であるが、一定量以上のマグネシウムが存在する表面 では、他合金の場合と比較して、ニッケルイオンの還元反応が抑制もしくは水素イオン の還元反応が促進された可能性がある。また、マグネシウムの添加量が少ない場合でも、 マグネシウムが表面に拡散することによって、マグネシウムで濃化した表面が形成され、 めっき開始時の表面特性が大きく変化し、上記の状態になることも推測される。亜鉛・ マグネシウムを含むアルミニウム合金について、めっき膜の密着性を向上させるには、 水素ガスの発生を抑制し、速やかにニッケルを析出させることが特に重要であり、この ためには亜鉛置換膜の厚さならびに亜鉛置換表面の化学状態を適切に制御することが不 可欠である。

<u>3-3-4. 結言</u>

本章では、亜鉛・マグネシウム・Siを含むアルミニウム合金に対して、亜鉛置換・無 電解 Ni-P めっきを行い、合金元素ならびに水素ガス発生が各処理に与える影響について 検討した。ここで得られた結果は、下記の通りである。

- (1) マグネシウムならびに Si は、亜鉛置換反応を速やかに開始・終了させる効果を示さ ず、アルミニウムの溶解と水素ガス発生が継続することにより亜鉛が過多に析出す る。
- (2) 亜鉛が過多に存在する表面では、めっき時に亜鉛が溶解し、ニッケルが析出すると 同時に、水素ガスが激しく発生するため、めっき膜と基板の間に多数の空隙が形成さ れ、めっき膜の密着性は極めて低い。
- (3) アルミニウム-亜鉛-マグネシウム合金では、薄く均一な亜鉛置換膜が形成されるため、 激しい水素ガス発生は継続しないものの、マグネシウム量が一定量を超えると、めっ き膜と基板の界面に水素ガス発生によると考えられる多数の空隙が形成され、密着強 度が著しく低下する。

参考文献

1) K.Murakami, M.Hino, R.Furukawa and T.Kanadani: J.JILM60 (2010) 81-87(in Japanese).

2) K.Murakami, M.Hino, M.Ushio, D.Yokomizo and T.kanadani: J.JILM 62 (2012) 199-205 (in Japanese).

3) K.Murakami, M.Hino, N.Nagata, H.Kanetuki, S.Kawai and T.kanadani: J.JILM62 (2012)19-222(in Japanese).

4) M.Pourbaix : (1974) *Atlas of Electrochemical Equilibria in Aqueous Solutions*, (National Association of Corrosion Engineers, Houston, TX, 1974).pp.168-176.

5) M.Pourbaix : *Atlas of Electrochemical Equilibria in Aqueous Solutions*, (National Association of Corrosion Engineers, Houston, TX, 1974). 406-413.



**Fig.3-3-1** Backscattered electron images (BEIs) of the surfaces of Al-2Mg and Al-2Si alloys after the zincate treatments for 30s,(a) Al-2Mg after the first zincate treatment,(b) Al-2Mg after the second zincate treatment, (c) Al-2Si after the first zincate treatment, (d) Al-2Si after the second zincate treatment.



**Fig.3-3-2** Backscattered electron images (BEIs) of Al-Mg-Zn alloyys after the zincate treatments for 30s,(a)Al-2Zn-0.2Mg after the first zincate treatments (b)Al-2Zn-0.2Mg after the second zincate treatment,(c)Al-2Zn-4.5Mg after the first zincate treatment,(d)Al-2Zn-4.5Mg after the second zincate treatment.



**Fig.3-3-3** Cross-sectional BEI and elemental distribution of 2N-Zn after plating for 600s, (a) BEI, (b)  $ZnK\alpha$  (c)  $NiK\alpha$ , (d)  $PK\alpha$ .



**Fig.3-3-4** Cross-sectional BEIs of Al-Mg-Zn alloys after the second zincate treatment for 30s and subsequent plating for 60s, (a) Al-2Zn-0.2Mg, (b) Al-2Zn-4.5Mg.

# 第4章 Al-Si 合金の機械的性質に及ぼす無電解 Ni-P めっきの影響

## 4-1 Al-1.2%Si 合金の機械的性質に及ぼす無電解 Ni-P めっきの影響

# 4-1-1. 緒 言

近年、省エネルギーや自動車等の排出CO。ガス抑制という地球環境保護の要請に応え るために、自動車をはじめとする輸送機器の軽量化が重要な問題とされている。軽量化 には広範囲にわたりアルミニウム合金を使用することも有効な手段の一つである。特に、 Al-Si 合金は鋳造性に優れ、他の元素を添加することで高強度化されるという特徴がある ので、鋳物およびダイカスト用アルミニウム合金の多くが、Al-Si 系を基本としている<sup>1)</sup> <sup>2)</sup>。また、この合金は耐摩耗性がよいことにより、自動車部品のピストンやシリンダへ ッド等に多用され、繰返し応力負荷下で用いられることも多く、疲労強度の向上は極め て重要な問題である。疲労破壊は材料の表面付近から微視き裂が発生し、より内部へ伝 播し破壊していくと考えられる<sup>3)</sup>。そのため、材料表面に圧縮残留応力を生じさせるシ ョット・ピーニング等の種々の表面硬化法を用いて表面付近での微視き裂発生を抑制す ることが行われている<sup>4)</sup>。無電解 Ni-P めっきは表面を硬化させるだけでなく耐摩耗性の 向上にも有効な手法であり、鉄鋼材料やアルミニウム材料の疲労強度が改善される 5.6。 ただし、めっき鋼板に繰返し曲げ負荷する際に、高引張り応力や高繰返し数等の条件下 では非晶質めっき皮膜の結晶化による強度劣化が起こり、疲労強度も低下するとも考え られているの。また、電解めっき処理した合金材料中には空孔-水素クラスターが非常 に多量に存在する<sup>8</sup>ことおよび無電解Ni-Pめっき処理時にめっき浴中で水素ガスの発生 が著しい<sup>9</sup>ことなども報告されている。金属材料が水素雰囲気中に置かれると、材料中 への水素浸透が起こり、水素脆化を生じる場合がある<sup>10)</sup>。

最近、金谷らは、1%程度のSiを含むAl-Si2元合金の析出微細組織と機械的性質の関係について検討し、熱処理条件によって材料表面付近にμmサイズの粗大な析出物が生成されることを見出している<sup>11)</sup>。このような表面組織が疲労強度等の機械的性質にどのような影響を及ぼすかは、興味深いところである。本節では、無電解Ni-Pめっき処理を施すことにより、Al-1.2%Si合金の機械的性質がどのように変化するかを検討した。

4-1-2. 実験方法

4-1-2-1. 試料作製および熱処理・めっき処理条件

実験に用いた合金は、99.996%Alと99.999%Siの両純金属を高純度アルミナるつぼ中にて、大気中で溶解・鋳造して作製した配合組成Al-1.2%Siの合金である。Table 4-1-1にこの合金の化学組成を示す。得られた鋳塊を823Kで2日間均一化処理後、中間焼鈍を交えながら熱間鍛造および冷間圧延によって0.7mm厚の板材とした。これを平行部の幅4mm、長さ15mm、厚さ0.7mmに切り出し、1200番までの紙やすり仕上げにより疲労試験および引張り試験用試料とした。

熱処理として、各試料に823K での溶体化処理後、炉中で室温まで冷却する炉冷処理 または823K での溶体化処理後、473K で18ksの時効処理をそれぞれ施した。

熱処理後の各試料に無電解 Ni-P めっきの前処理として脱脂,酸洗および亜鉛置換処理 (いわゆる、ジンケート処理)を施した。通常、工業的にはジンケート処理を2回繰り 返す亜鉛置換処理が一般的である<sup>12)、13)</sup>。しかし、今回用いた試料の場合,亜鉛置換処理 ではその後のめっき皮膜生成が良好でなかったためジンケート処理を5回行い、密着性 の良好な皮膜を生成させた。上記前処理を施した試料を363±3Kの無電解 Ni-P めっき液 (日本カニゼン(株)製 SD-200) に 5.4ks 浸漬した。得られためっき膜の厚さは、約30µm

# 4-1-2-2. 実験方法

であった。

炉冷処理(FCと略記)のみと炉冷処理・ジンケート処理後 Ni-P めっき処理(FC+Z +NPと略記)した試料ならびに時効処理(AGと略記)のみと時効処理・ジンケート処 理後 Ni-P めっき処理(AG+Z+NPと略記)した各試料について、インストロン材料試 験機を用いて初期ひずみ速度  $2x10^{4}s^{-1}$ で室温(293K)にて引張り試験し、得られた応力 ( $\sigma$ ) - ひずみ( $\epsilon$ )曲線より引張り強さおよび破断伸びを求めた。

次に、種々の熱処理およびジンケート処理5回を施した試料のいくつかはそのまま疲労試験に用い、残りの各試料について Ni-P めっき処理を施した後、疲労試験機に取付け、 室温(293K)にて応力比0、周波数30Hzの種々の繰返し引張り応力振幅(G)下で破断 までの繰返し数(N)を求めた。さらに、熱処理後の試料表面組織ならびに疲労試験後 の試料破断面を光学顕微鏡および走査電子顕微鏡(SEM)を用いて観察すると同時にエ ネルギー分散型X線分光法(EDX)による元素分析も行った。

#### 4-1-3. 結果および考察

#### 4-1-3-1. 熱処理後の表面組織

各熱処理後の試料表面について光学顕微鏡による観察を行った結果をFig.4-1-1および Fig.4-1-2 に示す。Fig.4-1-1 より,823K で溶体化処理後 293K まで炉中冷却した FC 材では 試料表面に μm サイズの粗大な析出物が結晶粒全体に渡って均一に生成していることが わかる。EDX 分析等より、この析出物は Si 相であることが分かった。一方、Fig.4-1-2 に見られるように焼入れ後 473K で 18ks 保持した AG 材では、溶体化処理直後(図は省 略)と同様にこのような粗大な析出物は全く認められない。Fig.4-1-1 の試料断面の SEM-EDX による Si マッピング結果が、Fig.4-1-3 である。表面付近に粗大な析出物が集 中して生成されており、より内部では、数が少なく不均一に生成されていることが分か る。表面付近に観られる粗大 Si 析出物が炉冷中に生成される温度範囲を調べるために、 固溶限温度以下の各温度まで炉冷後、氷水中に焼入れし、 粗大 Si 析出物の有無を検討し た結果、773K 付近で既に生成が認められた。表面付近で何故このように多数の Si 析出 物が生成されるのかは、以下のように解釈できる。Si 原子は空孔との結合エネルギーが 比較的大きい<sup>14)</sup>ために、Si-空孔クラスターを形成することが考えられる。また、試料 表面は過剰空孔の消滅場所として非常に有効に作用する<sup>15、16</sup>ため、表面付近の過剰空 孔は Si 原子とともに表面まで拡散し、その後消滅するであろう。773K のような高温で は非常に高濃度の空孔が存在し、拡散速度も大きいため、多数のSi 原子が表面付近に運 ばれ過剰空孔は消滅し、残った Si 原子により粗大な Si 析出物が生成されたのではない かと思われる。

4-1-3-2. 硬さおよび引張り特性

引張り特性を検討する前に、微小ビッカース硬さ測定により各熱処理後の試料硬さな らびに Ni-P めっき皮膜硬さを調べた。その結果、FC 材、AG 材およびめっき皮膜の平 均硬さ(HV)は、それぞれ 38、57 および 550 であった。したがって、めっき皮膜は両熱 処理材に比べて約 10 倍程度硬いことが分かった。溶体化処理後の試料硬さ、すなわち焼 入れ直後の硬さは約 33 であり、AG 材の硬さは 473K での時効によるピーク硬さに近い 値である。

Table 4-1-2 は、FC、FC+Z+NP、AG ならびに AG+Z+NP の各試料について引張り 試験を行い、得られた応力( $\sigma$ )-ひずみ( $\epsilon$ )曲線より求めた引張り強さおよび破断伸びを示 す。この表より、FC 材、AG 材ともにめっき処理後の引張り強さが約10%増大している ことがわかる。試料および皮膜厚さがそれぞれ 600um、30um であることから、皮膜の 体積割合は約10%と見積もることができる。合金試料部に比べて非常に硬いめっき皮膜 の存在が引張り強度の増大に寄与したと考えられる。また、時効処理を行うとめっき処 理後の破断伸びに顕著な変化は見られず、いずれも約 5%程度と小さい。これはピーク 時効時の微細組織に起因すると考えられる。即ち、TEM 観察結果<sup>17)</sup> によれば、結晶粒 内では平均サイズ 15nm の Si 析出物が均一に生成されるが、無析出物帯が粒界近傍に生 成されるとともに粒界上には平均サイズが約 170nm の粗大な Si に富む析出物も生成さ れており、破断面は一部粒界破壊の様相を示すことから、粒界上の Si 析出物が破壊の起 点となり、破断伸びも小さくなったと考えられる。一方、FC 材をめっき処理すると破断 伸びは未処理試料と比較しおよそ半減している。その原因として、軟らかい母材上に非 常に硬質なめっき皮膜を生成させたため、めっき皮膜の破断と同時に伸びきれていない 母材に急激に大きな力が掛かり破断したためか、あるいはジンケート処理時に多量に発 生した水素ガスの一部が試料内部に残り、引張り負荷時に表面付近の um サイズ析出物 周辺に拡散・集積することによって破断を促進したのではないかと思われるが、詳細は 今のところ不明である。

## <u>4-1-3-3. 疲労強度</u>

疲労強度への Ni-P めっきの影響について調べる前に、FC 材のジンケート処理そのものと疲労強度の関係ついて検討した。Fig.4-1-4 は、炉冷後ジンケート処理を施した試料と未処理の試料の両方について、種々の繰返し応力振幅(σ)下での破断までの繰返し数(N)を求めた結果をまとめた σ-N 曲線(以後、S/N 曲線と略記)である。図から明らかなように、両曲線はほとんど一致しており、この処理の有無による疲労強度の差異は認められなかった。

Fig.4-1-5 と Fig.4-1-6 は、それぞれ AG 材と FC 材の、S/N 曲線への Ni-P めっき処理の 影響について調べた結果である。Fig.4-1-5 から明らかなように、Ni-P めっき処理した場 合の疲労強度は時効処理のみ材に比べて全荷重域で明らかな増加を示している。田上ら も、純アルミニウム材と AC2B 材に無電解 Ni-P めっき処理を施すと両材料とも疲労強度 が増大するとしている<sup>6</sup>。特に、AC2B 材については、溶体化処理・水冷後 433K で 10.8ks 時効処理したものであり、Fig.4-1-5 の場合と類似の熱処理条件である。AG 材の疲労強 度がめっき処理を施すことによって増大するのは、表面に生成した非晶質の非常に硬い 皮膜の存在が疲労き裂の発生を抑制しているためとする田上らの見解を支持する結果で あろう。一方、FC 材では、めっき処理後、高荷重域を除き疲労強度が低下している

(Fig.4-1-6)。AG 材の場合とめっき処理条件等は同じであることから、めっき皮膜その ものに差異はなく、めっきによる疲労強度の低下は熱処理後の試料表面状態が関係して いるのではないかと考えられる。すなわち Fig.4-1-1 より、FC 材では試料表面に µm サ イズの粗大な Si に富んだ析出物が生成しているのに対して、AG 材では粗大な析出物は 見られない。ところで、アルミニウム合金へのジンケート処理時には、アルミニウムの 溶解とともに亜鉛の析出と水素ガスの発生が起こる<sup>9</sup>とされている。本研究の場合、5 回のジンケート処理を施すことにより非常に薄い亜鉛被膜が生成され、合金母材表面の 厚い酸化膜が除去されることにより、母材中への水素の浸透が容易になると思われる。 また、ジンケート皮膜は非常に薄いとされており<sup>9</sup>、疲労試験時には水素の放出も容易 であろう。7075 系アルミニウム合金に関する伊藤らの研究<sup>18</sup>によれば、母相の酸化膜が 水素の浸透を妨ぐために水素の侵入ならびに放出サイトは晶出第二相であるとしている。 したがって、高サイクル疲労試験時に、この水素が炉冷処理材の表面付近に存在する粗 大な Si に富んだ析出物と母相ならびに約 30µm 厚さの緻密な非晶質 Ni-P めっき皮膜と の界面に集まり、微視き裂の発生を促進したのではないかと推測される。

## 4-1-4. 結言

1%程度のSiを含むAl-Si系合金の機械的性質に及ぼす無電解Ni-Pめっき処理の影響について検討した結果、以下の諸点が明らかになった。

- (1) FC 材および AG 材ともにめっき処理後の引張り強さが未処理試料と比較し約 10%程度増大していることが分った。
- (2) AG 材ではめっき処理後の破断伸びはめっき処理の有無に関わらず、顕著な変化 が見られなかった。一方、FC 材ではめっき処理後の破断伸びが半減した。
- (3) 炉冷処理後ジンケート処理のみ施した場合の疲労強度は、炉冷処理のみの場合と ほとんど変わらなかった。
- (4) FC+Z+NP 材の疲労強度は、高荷重域を除いて全体的に低下した。
- (5) AG+Z+NP材の疲労強度は、明らかな増加を示した。
- (6) FC 材においてめっき処理後に疲労強度が低下するのは、ジンケート処理時に発生 する水素ガスの一部が炉冷材中に入り込み、この水素の存在によって、特に高サイ クル負荷中に試料表面の µm サイズ析出物とめっき皮膜の界面付近に集積し、微視 き裂発生に影響を及ぼすためではないかと考えられるが、詳細は不明である。

#### 参考文献

1) M.Adachi: J.JILM 34 (1984) 361-373(in Japanese).

2) The Japan Institute of Light Metals (Ed.). (1991). *Aluminum no Soshiki to Seishitsu*. pp.231-255(in Japanese).

3) T.Kobayashi. (Ed.): *Aluminum Gokin no Kyodo*, (Uchida Rokkakuho, 2001).pp125-127(in Japanese).

4) S.Suresh: Fatigue of Metals (2<sup>nd</sup> Ed.) (Cambridge Univ. Press, 1998) .pp.228-231.

5) H.Izumi, H.Sunada, Y.Kondo and T.Yamazaki : J.Jpn.Inst.Metals 44(1980)829-835. (in Japanese).

6) M.Tagami, S.Aso, S.Goto and K.Koike : J.JILM 43(1993) 281-284 (in Japanese).

7) T.Yamazaki, H.Izumi, H.Sunada and Y.Kondo : J.Jpn.Inst.Metals 45(1981)704-710 (in Japanese).

8) Y.Fukai : Materia Japan 50(2011) 521-528 (in Japanese).

9) K.Murakami, M.Hino, M.Ushio, D.Yokomizo and T.Kanadani: Mater.Trans. 54. (2013)199-206.

10) The Japan Institute of Light Metals (Ed.) :( 1991) Aluminum no Soshiki to Seishitsu. pp.389-394 (in Japanese).

11) T.Kanadani and K.Nakagawa: Collected Abstracts of the 2010 Spring Meeting of the Japan Institute of Metals (in Japanese).

12) M.Hino, M.Hiramatsu, K.Murakami and T.Kanadani : J.Surf.Fin.Soc.Jpn. 54(2003) 542-544 (in Japanese).

13) M.Hino, K.Murakami, M.Hiramatsu, K.Chen, A.Saijo and T.Kanadani : J.JILM 54 (2004)169-174 (in Japanese).

14) M.Ohta and F.Hashimoto: Trans. JIM 6 (1965) 9-14.

15) GItoh : Netushori Japan 33(1998)165-173 (in Japanese).

16) M.Ohta, T.Kanadani, A.Sakakibara, H.Yamada and M.Yamada : Phys.Stat.Sol. (a) 78 (1983)K23-26.

17) K.Nakagawa, T.Kanadani, N.Hosokawa and T.Tanimoto : J.JILM 50(2000)650-654 (in Japanese).

18) GItoh, T.Izumi and T.Tohyama: J.Jpn.Inst.Metals 58(2008)15-21 (in Japanese).

| Alloy     | Si   | Fe     | Cu     | Al   |
|-----------|------|--------|--------|------|
| Al-1.2%Si | 1.19 | < 0.01 | < 0.01 | bal. |

 Table 4-1-1 Chemical composition of Al-Si alloy(mass%).

| Processing | Tensile strength,<br>σb/MPa | Fracture elongation<br>EI(%) |  |  |
|------------|-----------------------------|------------------------------|--|--|
| FC         | 84.7                        | 20.8                         |  |  |
| FC+Z+NP    | 95.6                        | 10.9                         |  |  |
| AG         | 179                         | 4.4                          |  |  |
| AG+Z+NP    | 205                         | 5.6                          |  |  |

Table 4-1-2 Variation of tensile strength,  $\sigma b$  and fracture elongation, El by plating.



Fig.4-1-1 Surface structure of specimen after furnace-cooling from 823K to 293K.



Fig.4-1-2 Surface structure of specimen aged at 473KFor 18ks after quenching from 823K to 273K.



Fig.4-1-3 Cross-sectional structure of specimen after furnace-cooling from 823K to 293K.



**Fig.4-1-4** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens ;  $\bullet$ zincate treated or  $\bigcirc$  not zincate treated after furnace-cooling.



Fig.4-1-5 Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens;  $\bigcirc$  plated or  $\bigcirc$  not plated after aging.



**Fig.4-1-6** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens;  $\bigcirc$  plated or  $\bigcirc$  not plated after furnace-cooling.

# **4-2** 無電解 Ni-P めっきを施した Al-1.2% Si 合金の疲労強度に 及ぼす表面組織と水素の影響

4-2-1. 緒言

Al-Si系合金は鋳造性に優れ耐摩耗性がよいことから自動車部品等に多用されている<sup>1)、</sup> <sup>2)</sup>ために繰返し応力負荷下で用いられることも多く、疲労強度の向上は極めて重要な問 題である。疲労破壊は材料の表面付近で微視き裂が発生し、より内部へ伝播し母材を破 壊していくと考えられ<sup>3)</sup>、種々の表面硬化法を用いて表面付近での微視き裂発生を抑制 することが行われている<sup>4)</sup>。

前節で述べたように、金谷らは、1%程度のSiを含むAl-Si2元合金の析出微細組織と 機械的性質の関係について調べ、熱処理条件の違いによって材料表面付近にµmサイズ の粗大な析出物が生成されることを見出している<sup>5</sup>。このような表面組織が疲労強度等 の機械的性質にどのような影響を及ぼすかは、興味深いところである。著者らは、表面 硬化法の一つである無電解Ni-Pめっきを施したAl-Si合金の機械的性質について調べた 結果、めっき処理によって時効処理材の引張り強度や疲労強度は増加するが、表面付近 にµmサイズの粗大な析出物が生成される炉冷処理材の疲労強度は低下すること明らか にした<sup>6</sup>。この現象は、めっき処理の際に発生する水素ガスの一部が材料中に入り込み、 この水素が負荷中に試料表面のµmサイズ析出物とめっき皮膜の界面付近に集積し、微 視き裂発生に影響を及ぼすためではないかと解釈された<sup>6</sup>。

電解めっき処理すると、めっき被膜中には空孔-水素クラスターが非常に多量に存在 する<sup>7</sup>ことおよび無電解 Ni-P めっき処理時にめっき浴中で水素ガスの発生が著しい<sup>8)、</sup> <sup>9</sup>ことなども報告されている。金属材料が水素雰囲気中に置かれると、材料中への水素 浸透が起こり、水素脆化を生じる場合がある<sup>10~12)</sup>。

そこで本節では、放出水素量の測定を行うことにより熱処理および無電解 Ni-P めっき 処理した Al-1.2% Si 合金の疲労強度に及ぼす試料表面の Si 相析出ならびに水素の影響に ついて検討した。

4-2-2. 実験方法

4-2-2-1. 試料作製、熱処理・めっき処理条件と測定法

実験に用いた合金は前節と同じものであり、99.996%Alと99.999%Siの両純金属を高 純度アルミナるつぼ中にて、大気中で溶解・鋳造して作製した配合組成Al-1.2%Siの

合金である。Table 4-2-1 にこの合金の化学組成を示す。得られた鋳塊を 823K で 2 日間 均一化処理後,中間焼鈍を交えながら熱間鍛造および冷間圧延によって 0.7mm 厚の板材 とした。これを平行部の幅4mm、長さ15mm、厚さ0.7mmに切り出し、1200番までの 紙やすり仕上げにより疲労試験用試料とした。さらに熱処理として、各試料に823Kで の溶体化処理後、炉中で室温まで冷却する炉冷処理または823K での溶体化処理後,473K で18ksの時効処理をそれぞれ施した。熱処理後の各試料に無電解 Ni-P めっきの前処理 として脱脂,酸洗および亜鉛置換処理(亜鉛置換処理)を施した。通常、工業的には亜鉛 置換処理を2回繰り返す亜鉛置換処理が一般的である13、14)。前節で用いた試料の場合、 **亜鉛置換処理ではその後のめっき皮膜生成が良好でなかったため亜鉛置換処理を5回行** い、密着性の良好な皮膜を生成させた。この場合の亜鉛置換液は、薄く均一な亜鉛置換 皮膜を得るために、合金中の添加元素の果たす役割を検討する目的で酸化亜鉛を水酸化 ナトリウムの水溶液に溶解させた基本的なもの<sup>8</sup>である。実用化を考慮するならば、よ り少ない回数でこの処理を実施すべきと考え、鉄イオンを添加した亜鉛置換液を用いて 実験したところ2回の亜鉛置換処理で良好な皮膜を得ることが出来たので、本研究では 鉄添加亜鉛置換液を用いる亜鉛置換処理を行った。この鉄イオンの添加は、亜鉛置換処 理時に鉄が優先的に析出し、析出核として作用することにより亜鉛析出を薄く均一にす る物と考えられ、処理回数を増やして亜鉛析出を薄く均一にした前報のと同じ作用を有 するものである。前処理を施した試料を363±3Kの無電解Ni-Pめっき液に約0.3~3ks 間浸漬した。得られためっき膜の厚さは、約1~10µm であった。

炉冷処理(FCと略記)のみと炉冷処理・亜鉛置換処理(FC+Zと略記)した試料、 炉冷処理・亜鉛置換処理後 Ni-P めっき処理(FC+Z+NP と略記)した試料ならびに時 効処理(AGと略記)のみと時効処理・亜鉛置換処理後 Ni-P めっき処理(AG+Z+NP と略記)した各試料のいくつかはそのまま疲労試験に用い、残りの各試料について Ni-P めっき処理を施した後、疲労試験機に取付け、室温(293K)にて応力比0、周波数 30Hz の種々の繰返し引張り応力振幅(G)下で破断までの繰返し(N)を求めた。さらに,疲 労試験後の試料破断面を光学顕微鏡および走査電子顕微(SEM)を用いて観察した.水素 吸蔵量の評価は、ガスクロマトグラフィー型の昇温水素脱離分析装置(検出器 熱伝導度 検出器)を使用して行った。無電解めっきの有無で試験片に吸蔵された水素の昇温によ る放出挙動を調べた。実験条件は、昇温速度 27.8K/ks、到達温度 853K、測定間隔 0.3ks とした。吸蔵水素量(試料全体に占める水素の質量割合)は、室温から 623K までの水 素放出速度と昇温時間の関係より求めた。

4-2-3. 結果および考察

前述のように、本節では亜鉛置換液として鉄イオンを含む添加液を用いている。そこ で、各熱処理後のめっき処理材について疲労試験を行い、種々の繰返し応力振幅(σ) 下での破断までの繰返し数(N)を求めた結果をまとめた σ-N 曲線(以後,S/N 曲線と略 記)を前節の結果と比較した。Fig.4-2-1~Fig.4-2-3 に示すように、どの処理材でもほぼ 同様の傾向を示すことが確認できる。すなわち、(i)炉冷処理後亜鉛置換処理のみ施した 場合の疲労強度は、炉冷処理のみの場合とほとんど変わらない。(ii) FC+Z+NP 材の疲 労強度は、高荷重域を除いて全体的に低下する。(iii) AG+Z+NP 材の疲労強度は、明ら かな増加を示す。以上の結果から、より実用的な亜鉛置換処理を施すことで5回もの亜 鉛置換処理を施した前節での疲労特性と同様な効果が得られることが判明した。前節で は、FC 材においてめっき処理後に疲労強度が低下するのは、亜鉛置換処理およびめっき 処理時に発生する水素ガスの一部が炉冷材中に入り込み、この水素が特に高サイクル負 荷中に試料表面の μm サイズ析出物とめっき皮膜との界面付近に集積し、微視き裂発生 に影響を及ぼすためではないかと考えられるが、詳細は不明であると解釈した。これは、 亜鉛置換処理およびめっき処理時に試料中へ水素が吸蔵されるとの仮定に基づく推論で あった。

めっき処理により実際に水素が試料中に吸蔵されているのか否かを確かめるために、 各処理材について昇温時の放出水素量の測定を行った。FC+Z+NP 材のめっき皮膜厚さ に対する昇温水素脱離試験の結果を Fig.4-2-4 に示す。図から明らかなように、めっき処 理材の水素放出ピークは、めっき皮膜厚さによらず両材料とも 323K~423K 付近と 573K ~623K 付近に認められる。一方、未処理材では 473K 付近まで水素放出は見られず、523K を超えたあたりから僅かな放出がある。めっき処理材の低温側の水素放出はめっき皮膜 中の水素が放出されており、高温側ではめっき皮膜にブロックされて合金材料中に吸蔵 されていた水素が放出されているのではないかと思われる<sup>7,15</sup>が、詳細は不明であり、 今後めっき膜と合金中での吸蔵水素量のより正確な測定等を実施していきたい。

Fig.4-2-5 は Fig.4-2-4 より求めた 293K~623K での放出水素量を示す。未処理材に比べてめっき処理材の放出水素量の方がはるかに多く、また皮膜厚さが大きくなるとより多いことが分かる。これは、めっき処理時に発生する水素ガスの一部がめっき皮膜および

合金中に吸蔵され、めっき処理時間が長く皮膜厚さが大きい試料の方がより多く水素を 含むのであろう。なおめっき皮膜厚さが1µm、10µmと10倍の差があるにもかかわらず、 水素放出量にそれほどの差は認められない。Fig.4-2-4の昇温水素脱離曲線において2つ のピークが認められ、Fig.4-2-5では両ピークを含む 623Kまでの総水素量を求めて表示 しているが、めっき皮膜中の吸蔵された水素は拡散性の高い状態にある<sup>15)</sup>と考えられる ので、423Kまでの放出水素量で比較したところ、膜厚10µmの時には1µmのものより 約2倍の値となった。松岡ら<sup>16</sup>は、無電解ニッケルめっき皮膜の水素透過性について、 皮膜中のリン(P)含有率に着目して検討した結果、約8wt%までは(P)含有率の増加 に伴って水素の拡散係数が増大するが、(P)含有率がさらに高くなると拡散係数の急 激な低下が認められることを見出している。また、皮膜表面に緻密な不動態膜が形成さ れることによって水素の透過が抑制される可能性も指摘されており、本研究で用いため っき液は8~12wt%Pを含むものであり、上述の効果がある程度作用しているために膜厚 の差ほどには水素量の差が大きくならなかった可能性が考えられる。しかし、この点に ついては、めっき皮膜構造等を解明し、より詳細な検討が必要である。

炉冷処理後、亜鉛置換処理のみを施した材料について放出水素量の測定を行った結果 を Fig.4-2-6 に示す。この材料では、未処理材と同様に 473K 付近まで水素放出は見られ ず、523K を超えたあたりから放出が認められる。293K~623K での放出水素量は、FC +Z+NP 材(膜厚 10µm)の約 0.13 倍と大幅に少量であった。これは、、亜鉛置換処理を 施すことによりナノスケールの非常に薄い亜鉛皮膜が生成され<sup>8)、9</sup>、合金母材表面の厚 い酸化膜が除去されることにより、母材中への水素の浸透が容易になると同時に放出も 容易であるためではないかと考えられる。

次に、AG+Z+NP 材について昇温時の放出水素量の測定を行い、得られた 293K~623K での放出水素量を Fig.2-4-7 に示す。この場合のめっき皮膜厚さは約 10µm であり、同じ膜厚の FC+Z+NP 材と同程度の放出水素量であった。比較のために示した未処理 材では、炉冷処理材の場合と同様に水素放出は僅かであった。

以上の水素放出量測定結果を考慮してめっき処理による疲労強度変化について考察する。先ず、FC+Z材では水素放出が見られるが、低温側では認められず 573K 付近での 少量の放出のみである。一般に、低温側で放出される水素ほど拡散性が高く水素脆性に 大きく影響する<sup>15)</sup>とされており、このような性質の水素は、疲労き裂の発生が予想され る母材表面の µm サイズ析出物付近への集積が少なかったため、FC+Z材の疲労強度は 低下することなく未処理材とほぼ一致したのであろう。次に、FC+Z+NP 材 (皮膜厚さ 10µm)の放出水素量はFC 材やFC+Z 材よりも多量であるが、AG+Z+NP 材(皮膜厚 さ10µm)とは、ほぼ同量である。したがって、FC+Z+NP 材において低応力振幅下で 疲労強度がFC材やFC+Z材よりも低くなるのは、前節(4-1-3-3.)で解釈したように表 面付近に生成されている μm サイズ析出物と母相固溶体ならびにめっき皮膜周辺に水素 が集積<sup>の、17)</sup>し、微小き裂発生を容易にしたためと考えられる。AG+Z+NP 材では、FC +Z+NP 材と同程度の水素量を含むが表面付近にµm サイズ析出物が生成されていない ので、表面を被覆する非晶質の非常に硬い皮膜の存在により疲労き裂の発生が抑制され、 未処理材より高い疲労強度が得られたと考えられる。以前、田上らは純アルミニウムや AC2B時効処理材について本報と同様な疲労強度の傾向を報告している<sup>18</sup>が、両材料と も表面付近に µm サイズ析出物が生成されないためにめっき処理材の疲労強度が増大し たのであろう。AG+Z+NP 材では、時効処理により微細な nm の Si に富む析出物が均 一に形成され、表面付近では内部に比べてより大きな数 10nm サイズ析出物の形成が報 告<sup>19</sup>されている。これらの析出物は FC+Z+NP 材における µm サイズ析出物に比べて 約10<sup>2</sup>倍程度小さくかつ多数であるために、仮に同程度量の水素が存在したとしてもAG +Z+NP 材表面での個々の析出物への集積水素量は少ないであろう。そのために致命的 な疲労き裂の発生・成長が遅滞・抑制されたと考えられる。なお、疲労試験中でのめっ き材からの水素脱離などの詳細については、今後の検討課題にしたい。

<u>4-2-4. 結 言</u>

1%程度の Si を含む Al-Si 系合金の疲労強度に及ぼす表面析出物と無電解 Ni-P めっき 処理時に吸蔵される水素の影響について検討した結果、以下の諸点が明らかになった。

- (1) 炉冷処理をすると、試料表面付近にµm サイズの粗大な析出物が生成され、試料 を加熱すると明瞭な放出水素が認められる FC+Z+NP 材の疲労強度は、めっき 処理中の水素ガスならびに Si に富む析出物により低下し、加熱による水素放出 は認められた一方、粗大な析出物が生成されない AG+Z+NP 材の疲労強度は増 大することが見出された。
- (2) FC 材においてめっき処理後に疲労強度が低下するのは、主にめっき処理時に発生する水素ガスの一部がめっき被膜および炉冷材中に入り込み、この水素ガスが特に高サイクル負荷中に試料表面のµmサイズ析出物とめっき皮膜の界面付近に
集積し、微視き裂発生に影響を及ぼすためではないかと考えられる。

参考文献

1) M.Adachi : J.JILM 34. (1984) 361-373(in Japanese).

2) The Japan Institute of Light Metals (Ed.): *Aluminum no Soshiki to Seishitsu*. (1991) pp.231-255(in Japanese).

3) T.Kobayashi (Ed.): *Aluminum Gokin no Kyodo*, Uchida Rokkakuho, (2001) pp.125-127(in Japanese).

4) S.Suresh: Fatigue of Metals (2<sup>nd</sup> Ed.) Cambridge Univ. Press, (1998) pp.228-231.

5) T.Kanadani and K.Nakagawa: Collected Abstracts of the 2010 Spring Meeting of the Japan Institute of Metals (in Japanese).

6) N.Nagata, T.Kanadani, H.Hiraoka, M.Hukuhara, K.Murakami and M.Hino: J.Jpn.Inst.Metals 77(2013)575-579 (in Japanese).

7) Y.Fukai : Materia Japan 50(2011)521-528 (in Japanese).

8) K.Murakami, M.Hino, M.Ushio, D.Yokomizo and T.Kanadani:Mater.Trans. 54. (2013)199-206.

9) K.Murakami, M.Hino, N.Nagata and T.Kanadani : J.Jpn.Inst.Metals 77(2013)599-603 (in Japanese).

10) S.Osaki, N.Maeda, I.Morita, M.Nakai and H.Yabuta : J.JILM 60(2010)19-25 (in Japanese).

11) Y.Nakashima, S.Haruyama, K.Kaminishi and S.Osaki : J.JILM 61(2011)538-543 (in Japanese).

12) S.Osaki, S.Haruyama, T.Koga and K.Kaminishi : J.JILM 63(2013).57-64 (in Japanese).

13) M.Hino, M.Hiramatsu, K.Murakami and T.Kanadani: J.Surf.Fin.Soc.Jpn. 54(2003) 542-544 (in Japanese).

14) M.Hino, K.Murakami, M.Hiramatsu, K.Chen, A.Saijo and T.Kanadani: J.JILM 54(2004)169-174 (in Japanese).

15) M.Nagmo: Suiso Zeisei no Kiso, Uchida Rokkakuho, (2008) pp.319-321(in Japanese).

16) M.Matuoka, S.Maegawa and C.Iwakura: J.Surf.Fin.Soc.Jpn. 41(1990)706-707.

17) G.Itoh, T.Izumi and T.Tohyama : J.JILM 58(2008)15-21 (in Japanese).

18) M.Tagami, A.Aso, G.Goto, and A.Koike: J.JILM.43(1993) 281-284 (in Japanese).

19) K.Nakagawa, T.Kanadani, N.Hosokawa and T.Tanimoto: J.JILM 50(2000) 650-654 (in Japanese).

| 义 | • | 表 |
|---|---|---|
| 凶 | • | 衣 |

| Alloy     | Si   | Fe    | Cu    | Al   |
|-----------|------|-------|-------|------|
| Al-1.2%Si | 1.19 | <0.01 | <0.01 | bal. |

 Table 4-2-1 Chemical composition of Al-Si alloy(mass%).



**Fig.4-2-1** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens ;  $\blacktriangle$ (FC+Z, present work)  $\textcircled{}(FC+Z, previous work^{6})$ zincate treated or  $\bigcirc$ (FC, previous work<sup>6</sup>) not zincate treated after furnace-cooling.



**Fig.4-2-2** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens; (FC+Z+NP, present work)  $\bigcirc$ (FC+Z+NP, previous work<sup>6)</sup>) plated or  $\bigcirc$ (FC, previous work<sup>6)</sup>) unplated after furnace-cooling.



**Fig.4-2-3** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens;  $\blacktriangle$  (AG+Z+NP, present work)  $\bigcirc$ (AG+Z+NP, previous work<sup>6</sup>) plated or  $\bigcirc$ (AG, previous work<sup>6</sup>) unplated after aging



**Fig.4-2-4** Hydrogen desorption rate vs. temperature for specimens; 10 $\mu$ m plated (FC+Z+NP), 1 $\mu$ m plated (FC+Z+NP) or unplated (FC) after furnace-cooling.



Fig.4-2-5 Quantity of discharged hydrogen between 293K and 623K for specimens; 10 $\mu$ m plated(FC + Z + NP), 1 $\mu$ m plated(FC + Z + NP) or unplated(FC) after furnace-cooling.



**Fig.4-2-6** Hydrogen desorption rate vs. temperature for specimen; zincate treated (F+Z) after furnace-cooling.



**Fig.4-2-7** Quantity of discharged hydrogen between 293K and 623K for specimens; 10 $\mu$ m plated (AG+Z+NP) or unplated (AG) after aging.

# 第5章 無電解Ni-Pめっき処理したAl-GeおよびAl-Cu合金の疲労強度に 及ぼす表面組織と水素の影響

# 5-1 Al-4%Ge 合金の機械的性質に及ぼす

#### 無電解 Ni-P めっきの影響

# 5-1-1. 緒 言

アルミニウム合金は軽量でリサイクル性に優れており、熱処理による高強度化も図れることから、輸送機器等への更なる適用が期待されている.鋳造用 Al-Si 系合金などが用いられる自動車用部品では、繰返し負荷がかかることも多く、一定以上の耐摩耗性や疲労強度が要求される。著者らは、Al-1.2%Si 合金に熱処理を施した後、Al 合金の耐摩耗性向上等に有効とされ非常に硬質な皮膜生成を生じる無電解ニッケルーリン (Ni-P) めっき処理を施すことにより機械的性質の改善を試みた。その結果、いずれの場合も引張強さは向上するものの、伸びや疲労強度は熱処理条件により大きく異なることを明らかにした<sup>1)</sup>。特に、試料表面付近に µm サイズの粗大な析出物が生成される場合の疲労強度は、めっき処理によって低下した。これは、めっき処理の際に発生する水素ガスの一部が材料中に入り込み、この水素ガスが負荷中に試料表面の µm サイズ析出物とめっき皮膜の界面付近に集積し、微視き裂発生に影響を及ぼすためではないかと解釈し<sup>1)</sup>、その後の研究により、この材料中にはめっき処理により水素が吸蔵されていることが判明した<sup>2</sup>。

本節では Al-Si 合金と析出挙動が類似<sup>3-6</sup>し、µm サイズ析出物が生成<sup>7)、8)</sup>される Al-Ge 合金について、熱処理後のめっき処理による機械的性質の変化ならびに昇温時の水素放 出を調べた。

5-1-2. 実験方法

5-1-2-1. 試料作製、熱処理・めっき処理条件と測定方法

実験に用いた合金は、99.996%Alと99.999%Geの両純金属を高純度アルミナるつぼ中にて、大気中で溶解・鋳造して作製した配合組成Al-4%Geの合金である。Table 5-1-1にこの合金の化学組成を示す。得られた鋳塊を693Kで2日間均一化処理後、中間焼鈍を交えながら熱間鍛造および冷間圧延によって0.7mm厚の板材とした。これを平行部の幅4mm、長さ15mm、厚さ0.7mmに切り出し、1200番までの紙やすり仕上げにより疲労

試験および引張り試験用試料とした。熱処理として、各試料に 693K での溶体化処理後、 炉中で室温まで冷却する炉冷処理、または 693K で 3.6ks の溶体化処理後、273K の氷水 中に焼入れし、473K で 6ks の時効処理をそれぞれ施した。

熱処理後の各試料に無電解 Ni-P めっきの前処理として脱脂、酸洗および亜鉛置換処理 (ジンケート処理)を施した。通常、工業的には亜鉛置換処理を2回繰り返す亜鉛置換 処理が一般的である<sup>9,10</sup>。しかし、今回用いた試料の場合、亜鉛置換処理ではその後の めっき皮膜生成が良好でなかったため亜鉛置換処理を5回行い、密着性の良好な皮膜を 生成させた。上記前処理を施した試料を363±3Kの無電解 Ni-P めっき液に5.4ks 浸漬し た。得られためっき膜の厚さは、約30µm であった。

炉冷処理(FCと略記)のみと炉冷処理・亜鉛置換処理後 Ni-P めっき処理(FC+Z+NP と略記)した試料ならびに時効処理(AGと略記)のみと時効処理・亜鉛置換処理後 Ni-P めっき処理(AG+Z+NP と略記)した各試料について、インストロン材料試験機 を用いて初期ひずみ速度  $2x10^4s^{-1}$ で室温(293K)にて引張り試験し、得られた応力( $\sigma$ ) – ひずみ( $\epsilon$ )曲線より引張り強さおよび破断伸びを求めた。

次に、種々の熱処理および亜鉛置換処理5回を施した試料のいくつかはそのまま疲労 試験に用い、残りの各試料について Ni-P めっき処理を施した後、疲労試験機に取付け、 室温(293K)にて応力比、周波数30Hzの種々の繰返し引張り応力振幅(G)下で破断ま での繰返し数(N)を求めた。さらに、熱処理後の試料表面組織ならびに疲労試験後の 試料破断面を光学顕微鏡および走査電子顕微鏡(SEM)を用いて観察すると同時にエネ ルギー分散型 X 線分光法(EDX)による元素分析も行った。.水素吸蔵量の評価は、ガ スクロマトグラフィー型の昇温水素脱離分析装置(検出器 熱伝導度検出器)を使用して 行った。無電解めっきの有無で試験片に吸蔵された水素の昇温による放出挙動を調べた。 実験条件は、昇温速度27.8K/ks、到達温度853K、測定間隔0.3ksとした。吸蔵水素量(試 料全体に占める水素の質量割合)は、室温から623Kまでの水素放出速度と昇温時間の 関係より求めた。

#### 5-1-3. 結果および考察

#### 5-1-3-1. 熱処理後の表面組織

各熱処理後の試料表面について光学顕微鏡による観察を行った結果をFig.5-1-1および Fig.5-1-2 に示す.Fig.5-1-1 より、493K で溶体化処理後 293K まで炉中冷却した FC 材では 試料表面に数 μm~数 10 十 μm サイズの粗大な析出物が結晶粒全体に渡って均一に生成 していることがわかる。これらは、Al-Si合金中のSi相<sup>1)</sup>よりも更に大きい析出物であっ た。EDX 分析等より、この析出物はGe に富む相であることが分かった。一方、Fig.5-1-2 に見られるように焼入れ後473K で6ks保持したAG 材では、FC 材ほど大きくはないが um サイズの析出物が認められた。また、AG 材では粒界近傍に無析出物帯 (PFZ)の生 成が観られるとともに、この図ではあまり明瞭ではないが、粒界析出物の生成も観察さ れている。表面付近に観られる粗大 Ge 析出物が炉冷中に生成される温度範囲を調べる ために、固溶限温度以下の各温度まで炉冷後、氷水中に焼入れし、粗大 Ge 析出物の有 無を検討した結果、623K付近で既に生成が認められた。表面付近で何故このように粗大 なGe 析出物が生成される理由は、以下のように解釈できる。Ge 原子は空孔との結合エ ネルギーがかなり大きい<sup>11)</sup>ために、Ge-空孔クラスターを形成することが考えられる。 また、試料表面は過剰空孔の消滅場所として非常に有効に作用する<sup>12,13</sup>ため、表面付 近の過剰空孔はGe原子とともに表面まで拡散し、その後消滅するであろう。FC材の場 合、炉冷中に 623K のような高温では高濃度の空孔が存在し、拡散速度も大きいため、 多数の Ge 原子が表面付近に運ばれ過剰空孔は消滅し、残った Ge 原子により粗大な Ge 析出物が生成されたのではないかと思われる。また、AG 材の場合にも Al-Si 合金では認 められなかった um サイズ析出物の生成が見られたのは、Ge 原子と空孔の結合エネルギ ーが Si 原子に比べてかなり大きい<sup>11)</sup> ために、焼入れ中に多数の溶質原子が表面付近に 集積し、その後の時効処理中に μm サイズの析出物へと成長したのであろ。粒界は空孔 消滅場所 (sink) としての作用が顕著であるために、粒界析出ならびに無析出物帯 (PFZ) の生成が生じている。焼入れ後、室温付近で約一日程度保持したこの合金試料の断面に ついて EPMA による濃度分布を求めたところ、試料中心部に比べて表面付近の Ge 濃度 は明らかに高くなっていた<sup>14)</sup>が、Al-1.2%Si合金等を用いた室温時効ではこのような現 象は認められなかった。従って、この合金では Al 中の Ge の拡散が、空孔拡散機構によ り低温でも容易に起こりうると考えられる。

#### 5-1-3-2. 硬さおよび引張り特性

引張り特性を検討する前に、微小ビッカース硬さ測定により各熱処理後の試料硬さな らびに Ni-P めっき皮膜硬さを求めた。その結果、FC 材、AG 材およびめっき皮膜の平 均硬さは、それぞれ 47Hv、55Hv および 570Hv であった。したがって、めっき皮膜は両 熱処理材に比べて約 10 倍程度硬いことが分かった。

Fig.5-1-3 は、FC および FC+Z+NP 試料について引張り試験を行い、得られた応力(の) ひずみ(ɛ)曲線の一例を示す。Table 2 は、FC、FC+Z+NP、AG ならびに AG+Z+NP の各試料について得られた σ-ε 曲線より求めた引張り強さおよび破断伸びを示す。この 表より、炉冷処理、時効処理ともにめっき処理後の引張り強さが約 10%増大しているこ とがわかる。試料および皮膜厚さがそれぞれ 600µm,30µm であることから、皮膜の体積 割合は約 10%と見積もることができる。合金試料部に比べて非常に硬いめっき皮膜の存 在が引張り強度の増大に寄与したと考えられる。また、時効処理ではめっき処理後の破 断伸びに顕著な変化は見られず、いずれも約 9%程度と小さい。これはピーク時効時の 微細組織に起因すると考えられる。即ち、TEM 観察結果<sup>15)</sup> によれば、結晶粒内では平 均サイズ 124nm の Ge 析出物が均一に生成されるが、無析出物帯が粒界近傍に生成され るとともに粒界上には平均サイズが約 254nm の粗大な Ge 析出物が破壊の起点となり、 破断伸びも小さくなったと考えられる。一方、炉冷処理材ではめっき処理後の破断伸び はおよそ半減している。

その原因として、軟らかい母材上に非常に硬質なめっき皮膜を生成させたため、めっ き皮膜の破断と同時に伸びきれていない母材に急激に大きな力が掛かり破断したためか、 あるいは亜鉛置換処理ならびにめっき処理時に多量に発生した水素ガスの一部が試料内 部に残り、水素ガスが引張り負荷時に表面付近の µm サイズ析出物周辺に拡散・集積す ることによって破断を促進したのではないかと思われるが、詳細は今のところ不明であ る。

なお、Fig.5-1-3のFC+Z+NP 試料のσ-ε 曲線において見られるセレーションは、AG +Z+NP 試料についても認められており、SEM 観察結果よりめっき膜の随時破断に起 因するのではないかと思われるが、めっき皮膜からの水素放出等の詳細な調査とあわせ て、今後の検討課題としたい。

#### 5-1-3-3. 疲労強度

Fig.5-1-4 と Fig.5-1-5 は、それぞれ FC 材と AG 材の S/N 曲線への Ni-P めっき処理の影響について調べた結果である。Fig.5-1-4 から明らかなように、FC 材ではめっき処理することにより疲労強度が低下している。一方、Fig.5-1-5 に示すように AG 材の場合、応力振幅が高い場合には時効処理のみ材のほうが疲労強度は高いが、応力が低くなるにつれてめっき処理材の方が疲労強度は高くなっていることがわかる。FC 材と AG 材のめっきによる疲労特性への影響を考察すると、両方ともめっき処理条件等は同じであることから、めっき皮膜そのものに差異はなく、めっきによる疲労強度の低下傾向の違いは熱処理後の試料表面状態が関係しているのではないかと考えられる。

疲労特性に及ぼすめっき処理の影響をまとめると、表面析出物が無い場合にはいずれ もめっき処理によって疲労強度は改善<sup>1)、2)、16</sup>されるが、表面に粗大析出物がある場合に はめっき処理が悪影響<sup>1)、2)</sup>を及ぼすといえる。しかし、**Fig.5-1-3**に示す AG 材で見られ るような析出形態の場合は負荷応力レベルによって複雑な挙動を示す。例えば本研究の AG 材と Al-Si 合金の FC 材<sup>1)</sup>について比較すると、いずれも表面析出物の分布および析 出サイズは同程度であるにもかかわらず、疲労強度特性に及ぼすめっき処理の影響は全 く逆であった。すなわち Al-Si 合金の高応力側ではめっき処理によって疲労強度が改善 しており、低応力側では悪化した。現時点では、この現象について明確な理由を明らか にすることはできなかった。この点については、今後、詳細な破断面観察等により検討 していきたいと考えている。

# 5-1-3-4. 水素放出量

アルミニウム合金への亜鉛置換処理時並びにめっき処理時には、水素ガスの発生が起こる<sup>17,18</sup>とされている。そこで、めっき処理により実際に水素が試料中に吸蔵されているのか否かを確かめるために、各処理材について昇温時の放出水素量の測定を行った。 FC+Z+NP 材のめっき皮膜厚さに対する昇温水素脱離試験の結果を Fig.5-1-6 に示す。 図から明らかなように、めっき処理材の水素放出ピークは、めっき被膜厚さによらず両材料とも323K~423K付近と573K~623K付近に認められる。一方、未処理材では473K付近まで水素放出は見られず、523Kを超えたあたりから僅かな放出がある。めっき処理材の低温側の水素放出はめっき皮膜中の水素が放出されており、高温側ではめっき皮膜 れるが、詳細は不明である。Fig.5-1-7 は Fig.5-1-6 より求めた 293K~623K での放出水素 量を示す。未処理材に比べてめっき処理材の放出水素量の方がはるかに多く、また皮膜 厚さが大きくなるとより多いことが分かる。これは、めっき処理時に発生する水素ガス の一部がめっき皮膜および合金中に吸蔵され、めっき処理時間が長く皮膜厚さが大きい 試料の方がより多く水素を含むのであろう。めっき皮膜厚さが約 10µm の AG+Z+NP 材について、昇温時の放出水素量を求めた結果,FC+Z+NP 材と同程度の放出水素量が 得られた。また、未処理材では、炉冷処理材の場合と同様に水素放出は僅かであった。

本研究の場合、亜鉛置換処理を施すことにより非常に薄い亜鉛被膜が生成され、合金 母材表面の厚い酸化膜が除去されることにより、母材中への水素の浸透が容易になると 思われる。また、亜鉛置換皮膜は非常に薄いとされており<sup>17,18</sup>、疲労試験時には水素の 放出も容易であろう。7075 系アルミニウム合金に関する伊藤らの研究<sup>19</sup>によれば、母相 の酸化膜が水素の浸透を妨ぐために水素の侵入ならびに放出サイトは晶出第二相である としている。したがって、疲労試験時に、この水素が炉冷処理材の表面付近に存在する 粗大な Ge 析出物と母相ならびに約 30µm 厚さの緻密な非晶質 Ni-P めっき皮膜との界面 に集まり、微視き裂の発生を促進したのではないかと考えられる。

# 5-1-4. 結 言

Al-4%Ge合金の機械的性質に及ぼす無電解Ni-Pめっき処理の影響について検討した結果、以下の諸点が明らかになった。

- (1) FC 材および AG 材ともにめっき処理後の引張り強さが処理前と比較し約 10%程度増大していることが分った。
- (2) AG 材ではめっき処理による破断伸びは顕著な影響が見られなかった。一方、FC 材ではめっき処理により破断伸びが処理前と比較し70%まで低下した。
- (3) FC+Z+NP 材の疲労強度は、めっき処理により全体的に低下した。
- (4) AG+Z+NP 材の疲労強度は、処理前と比較し低応力振幅下では増加するが、高 応力振幅下で低下した。
- (4) FC+Z+NP 材、AG+Z+NP 材ともにめっき処理に起因する同程度の量の水素放
   出が認められた。
- (5) FC 材においてめっき処理によってに疲労強度が低下するのは、亜鉛置換処理時 に発生する水素ガスの一部が炉冷材中に入り込み、この水素ガスが負荷中に試料

表面のµmサイズ析出物とめっき膜の界面付近に集積し、微視き裂発生に影響を 及ぼすためではないかと考えられる。

#### 参考文献

1) N.Nagata, T.Kanadani, H.Hiraoka, M.Hukuhara, K.Murakami and M.Hino: J.Jpn.Inst.Metals 77(2013)575-579 (in Japanese).

2) T.Kanadani, N.Nagata, M.Hukuhara, K.Nakagawa, K.Horikawa, K.Murakami and M.Hino: Collected Abstracts of the 2014 Autumn Meeting of the Japan Institute of Metals (in Japanese).

3) E.Hornbogen, A.K.Mukhopadhyay and E.A.Stark, Jr : Z.Metallkd.83(1992) 577-584.

4) E.Hornbogen, A.K.Mukhopadhyay and E.A.Stark, Jr : J.Mater.Sci. 28(1993)3670-3674.

5) H.J.Koenigsmann, E.A.Starke, Jr and P.E.Allaire: Acta.Mater. 44 (1996)3069-3075.

6) D.Mitlin, U.Dahmen, V.Radmilovic and J.W.Morris, Jr: Mater.Sci.Eng. A301(2001) 231-236.

7) K.Nakagawa, T.Kanadani, N.Nagaoka, A.Sakakibara and G.Itoh: J.Jpn.Inst.Metals 70 (2006)897-904 (in Japanese).

8) T.Kanadani and K.Nakagawa: Collected Abstracts of the 2010 Spring Meeting of the Japan Institute of Metals (in Japanese).

9) M.Hino, M.Hiramatsu, K.Murakami and T.Kanadani: J.Surf.Fin.Soc.Jpn. 54(2003)542-544 (in Japanese).

10) M.Hino, K.Murakami, M.Hiramatsu, K.Chen, A.Saijo and T.Kanadani: J.Surf.Fin.Soc.Jpn. 54(2003)542-544 (in Japanese).

11) M.Ohta and F.Hashimoto: Trans. JIM 6 (1965)9-14.

12) M.Ohta, T.Kanadani, A.Sakakibara, H.Yamada and M.Yamada: Phys.Stat.Sol. (a) 78(1983)K23-26.

13) G.Itoh : Netushori Japan 33(1998)165-173 (in Japanese).

14) T.Kanadani, N.Nshida and N.Yasuhara: Collected Abstracts of the 2002 Spring Meeting of the Japan Institute of Metals 426 (in Japanese).

15) K.Nakagawa, T.Kanadani, G.Itoh, N.Hosokawa and T.Tanimoto: J.JILM 53(2003)104-109 (in Japanese).

16) M.Tagami, S.Aso, S.Goto and K.Koike: J.JILM 43 (1993)281-284 (in Japanese).

17) K.Murakami, M.Hino, M.Ushio, D.Yokomizo and T.Kanadani: Mater.Trans. 54 (2013)199-206.

18) K.Murakami, M.Hino, N.Nagata and T.Kanadani: J.Jpn.Inst.Metals 77(2013)599-603 (in Japanese).

19) G.Itoh, T.Izumi and T.Tohyama: J.Jpn.Inst.Metals 58(2008)15-21 (in Japanese).

| Alloy     | Ge   | Fe    | Cu    | Al   |
|-----------|------|-------|-------|------|
| Al-1.2%Si | 3.96 | <0.01 | <0.01 | bal. |

 Table 5-1-1 Chemical compoSition of Al-Ge alloy (mass%).

# 図・表

| Processing | Tensile strength,<br>σb/MPa | Fracture elongation<br>EI(%) |  |
|------------|-----------------------------|------------------------------|--|
| FC         | 106.2                       | 26.2                         |  |
| FC+Z+NP    | 120.6                       | 18.1                         |  |
| AG         | 120                         | 8.7                          |  |
| AG+Z+NP    | 133.6                       | 9                            |  |

Table 5-1-2 Variation of tenSile strength,  $\sigma b$  and fracture elongation, El by plating.



Fig.5-1-1 Surface structure of specimen after furnace-cooling from 693K to 293K.



Fig.5-1-2 Surface structure of specimen aged at 473K for 18ks after quenching from 693K to 273K.



Fig.5-1-3 Stress ( $\sigma$ )-strain ( $\epsilon$ ) curves of furnace-cooled specimens.



**Fig.5-1-4** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens;  $\bigcirc$  plated or  $\triangle$ unplated after furnace-cooling.



**Fig.5-1-5** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for specimens;  $\bigcirc$  plated or  $\triangle$ unplated after aging.



**Fig.5-1-6** Hydrogen desorption rate vs. temperature for specimens; 10µm plated(Fc+Z+NP), 1µm plated(Fc+Z+NP), or unplated after furnace-cooling.



**Fig.5-1-7** Quantity of discharged hydrogen between 293K and 623K for specimens; 10µm plated, 1µm plated or unplated after furnace-cooling.

# **5-2** 無電解 Ni-P めっきを施した Al-2% Cu および Al-2% Zn 合金の 疲労強度に及ぼす表面組織と水素の影響

5-2-1. 緒 言

第4章では、1%程度のSiを含む希薄Al-Si合金について、種々の熱処理を施した後、 耐摩耗性向上等に有効とされる非常に硬質な皮膜生成を生じる無電解Ni-P めっき処理 した場合の引張り特性や疲労強度等について検討した。その結果、いずれの場合も引張 強さは向上するものの、伸びや疲労強度はめっき処理前の熱処理条件により大きく異な ることが明らかになった<sup>1)</sup>。特に,試料表面付近にミクロン(µm)サイズの粗大な析出物 が生成される場合の疲労強度は、めっき処理によって低下した。これは、めっき処理の 際に発生する水素ガスの一部が材料中に入り込み、これが負荷中に試料表面のµmサイ ズ析出物とめっき皮膜の界面付近に集積し、微視き裂発生に影響を及ぼすためではない かと解釈した<sup>1)</sup>。また、この材料中にはめっき処理により水素が吸蔵されていることが 判明した<sup>2)</sup>。更に、この合金と類似の析出挙動<sup>360</sup>を示し、表面付近でのµmサイズ析出 物の形成がより顕著<sup>7)</sup>であるAl-4%Ge 合金についても析出挙動が同様な傾向が得られて いる<sup>8)</sup>。これら両合金で生成されるµmサイズ析出物は、サイズに違いはあるが、どち らもダイヤモンド結晶構造を有している。

本節では、時効初期に GP ゾーンや中間相が形成されるなど Al-Si、Al-Ge 合金とは析 出挙動が異なることが知られている Al-Cu 合金および Al-Zn 合金の疲労強度と µm サイ ズ析出物ならびに水素の関係について調べた結果を述べる。

5-2-2. 実験方法

実験に用いた合金は、99.996%Al、99.999%Cu および 99.999%Zn の各純金属を高純度 アルミナるつぼ中にて、大気中で溶解・鋳造して作製した配合組成 Al-2%Cu (以下、AC と略記)および Al-2%Zn (以下 AZ と略記)の合金である。Table 5-2-1 にこれらの合金 の化学組成を示す。得られた鋳塊をそれぞれ 823K あるいは 773K で2 日間均一化処理後、 中間焼鈍を交えながら熱間鍛造および冷間圧延によって 0.7mm 厚の板材とした。これを 平行部の幅 4mm、長さ 15mm、厚さ 0.7mm に切り出し、1200 番までの紙やすり仕上げ により疲労試験および引張り試験用試料とした。熱処理として、AC、AZ 各合金試料に それぞれ 823K、773K での溶体化処理後、炉中で室温まで冷却する炉冷処理を施した。 熱処理後の各試料に無電解 Ni-P めっきの前処理として脱脂、酸洗および亜鉛置換処理 (いわゆるジンケート処理)を施した。通常、工業的には亜鉛置換処理を2回繰り返す 亜鉛置換処理が一般的である<sup>9,10</sup>。今回用いた試料の場合も亜鉛置換処理によりその後 のめっき皮膜生成が良好であったため亜鉛置換処理を2回行った。上記前処理を施した 試料を363±3K の無電解 Ni-P めっき液(日本カニゼン(株)製 SD-200)に0.3ks あるいは 3ks 浸漬した。得られためっき膜の厚さは、それぞれ約1µm、10µm であった。

炉冷処理のみと炉冷処理・亜鉛置換処理後 Ni-P めっき処理した各試料を疲労試験機に 取付け、室温(293K)にて応力比 0、周波数 30Hz の種々の繰返し引張り応力振幅(の) 下で破断までの繰返し数(N)を求めた。

水素吸蔵量の評価は、ガスクロマトグラフィー型の昇温水素脱離分析装置(検出器 熱 伝導度検出器)を使用して行った。無電解めっきの有無で試験片に吸蔵された水素の昇 温による放出挙動を調べた。実験条件は昇温速度 27.8K/ks、到達温度 853K、測定間隔 0.3ks とした。吸蔵水素量(試料全体に占める水素の質量割合)を室温から 623K までの 水素放出速度と昇温時間の関係より求めた。さらに、熱処理後の試料表面組織を光学顕 微鏡および走査電子顕微鏡 (SEM)を用いて観察すると同時にエネルギー分散型 X 線分 光法 (EDX) による元素分析も行った。

# 5-2-3. 結果および考察

# 5-2-3-1. 熱処理後の表面組織

熱処理後の AC および AZ 合金の試料表面について光学顕微鏡による観察を行った結 果をそれぞれ Fig.5-2-1、Fig.5-2-2 に示す。Fig.5-2-1 より、823K で溶体化処理後 293K ま で炉中冷却した AC 炉冷材では試料表面に μm サイズの粗大なヒモ状の析出物が結晶粒 全体に渡って均一に生成していることがわかる。合金組成、熱処理条件等より、この析 出物はθ(CuAl<sub>2</sub>)相と考えられる<sup>11)</sup>。一方、773K より炉中冷却した AZ 合金では、粗大 な析出物は全く認められない(Fig.5-2-2)。両合金に於いて、表面付近でこのような粗 大析出物生成の差異は以下のように解釈できる。AC 合金については、Cu 原子と空孔の 結合エネルギーは Si や Ge 原子に比べると小さいが Zn 原子等に比べると相当大きい<sup>12)</sup> ために、Cu-空孔クラスターの形成が考えられる。また、試料表面は過剰空孔の消滅場所 として非常に有効に作用する<sup>13,14)</sup>ため、表面付近の過剰空孔は Cu 原子とともに表面ま で拡散し、その後消滅するであろう。平衡状態図<sup>15)</sup>より、この合金の析出は 703K 付近 から 生じると考えられる。703Kのような高温では高濃度の空孔がバルク(bulk)内に存在し、 拡散速度も大きいため、多数の Cu 原子が表面付近に運ばれ過剰空孔は消滅し、残った Cu 原子により粗大な析出物が表面付近に生成されたのではないかと思われる。一方、 AZ 合金では、Zn と空孔の結合エネルギーは非常に小さく<sup>12)</sup>、析出は 333K 程度以下で 起こる<sup>10</sup>とされている。したがって、炉冷材で粗大な析出物の生成が認められなかった と考えられる。

#### 5-2-3-2. 疲労強度

Fig.5-2-3 と Fig.5-2-4 は、それぞれ AC、AZ 合金炉冷材の S/N 曲線に対する Ni-P めっき処理の影響について検討した結果である。Fig.5-2-3 から明らかなように、AC 合金を Ni-P めっき処理した場合の疲労強度は炉冷処理のみ材に比べて全応力振幅域で明らか な低下を示している。逆に AZ 合金では、めっき処理材の方が全応力振幅域で疲労強度 が大きくなっている(Fig.5-2-4)。

AC、AZ 両合金材ともめっき処理条件等は同じであることから、めっき皮膜そのもの に差異はなく、めっきによる疲労強度の低下は熱処理後の試料表面状態の違いが関係し ているのではないかと考えられる。Fig.5-2-1 より、AC 材では試料表面に µm サイズの 粗大な析出物が生成しているのに対して、AZ 材では粗大な析出物は見られない。以上 の結果は、Al-Si 合金等における炉冷材と時効材との関係に類似している<sup>1)</sup>。

# 5-2-3-3. 水素放出量

アルミニウム合金への亜鉛置換処理時並びにめっき処理時には水素ガスの発生が起こる<sup>17,18</sup>とされている。そこで、めっき処理により水素がこれらの試料中に吸蔵されているのか否かを確かめるために、各処理材について昇温時の放出水素量の測定を行った。 AC 合金材のめっき皮膜厚さに対する昇温水素脱離試験の結果を Fig.5-2-5 に示す。めっき処理材の水素放出ピークは、両材料とも 323K~373K 付近と 523K~623 付近に認められる。

一方、未処理材では 473K 付近まで水素放出はほとんど見られず、523K を超えたあ たりから僅かな放出がある。めっき処理材の低温側の水素放出はめっき皮膜中の水素の 放出によるもので、高温側ではめっき皮膜にブロックされて合金材料中に吸蔵されてい た水素が放出されているのではないかと思われるが、詳細は不明である。Fig.5-2-6 は Fig.5-2-5 より求めた 293K ~623K での放出水素量を示す。未処理材に比べてめっき処理 材の放出水素量の方がはるかに多いことが分かる。これは、めっき処理時に発生する水 素ガスの一部がめっき皮膜および合金中に吸蔵され、めっき処理時間が長く皮膜厚さが 大きい試料の方がより多く水素を含むことを示唆している。次に、AZ 合金材について 昇温時の放出水素量の測定によって得られた293K~623K での放出水素量を Fig.5-2-7 に 示す。この場合の放出水素量は、同じ膜厚の AC 合金材よりも多かった。比較のために 示した未処理材の水素放出量は、AC 合金材の場合よりもさらに少なかった。両合金の めっき処理で水素放出量に違いが生じる原因については、今のところ不明である。

本実験で用いた合金の場合、亜鉛置換処理を施すことにより非常に薄い亜鉛被膜が生成され、合金母材表面の厚い酸化膜が除去されることにより、母材中への水素の浸透が容易になると思われる。また、亜鉛置換皮膜は非常に薄いとされており<sup>15,10</sup>、疲労試験による水素の放出も容易であろう。7075系アルミニウム合金に関する伊藤らの研究<sup>19</sup> によれば、母相の酸化膜が水素の浸透を妨ぐために水素の侵入ならびに放出サイトは晶 出第二相であるとしている。したがって、高サイクル疲労試験時に、この水素が炉冷処 理材の表面付近に存在する粗大な析出物と母相ならびに数 10µm 厚さの緻密な非晶質 Ni-P めっき皮膜界面に集まり、微視き裂の発生を促進したのではないかと考えられる。

5-2-4. 結 言

無電解Ni-Pめっき処理したAl-2%CuおよびAl-2%Zn合金の疲労強度に及ぼす表面析 出物ならびに水素の影響について検討した結果、以下の諸点が明らかになった。

- (1) AC合金炉冷材では表面付近にµmサイズの粗大な析出物の生成が認められたが、 AZ合金炉冷材では認められなかった。
- (2) めっき処理した AC 合金炉冷材の疲労強度は、未処理材よりも明らかに低下した。
- (3) めっき処理した AZ 合金炉冷材の疲労強度は、AC 材とは逆に未処理材よりも明らかに増加した。
- (3) AC 合金材、AZ 合金材ともにめっき処理に起因する試料からの水素放出が検出 された。
- (4) AC 材においてめっき処理後に疲労強度が低下するのは、亜鉛置換処理時に発生 する水素ガスの一部が炉冷材中に入り込み、この水素ガスが負荷中に試料表面の µm サイズ析出物とめっき皮膜の界面付近に集積し、微視き裂発生に影響を及ぼ すためではないかと考えられる。

#### 参考文献

1) N.Nagata, T.Kanadani, H.Hiraoka, M.Hukuhara, K.Murakami and M.Hino: J.Jpn.Inst.Metals 77(2013)575-579 (in Japanese).

2) T.Kanadani, N.Nagata, M.Hukuhara, K.Nakagawa, K.Horikawa, K.Murakami and M.Hino: Collected Abstracts of the 2014 Autumn Meeting of the Japan Institute of Metals (in Japanese).

3) E.Hornbogen, A.K.Mukhopadhyay and E.A.Stark, Jr: Z.Metallkd.83 (1992)577-584.

4) E.Hornbogen, A.K.Mukhopadhyay and E.A.Stark, Jr: J.Mater.Sci. 28(1993) 3670-3674.

5) H.J.Koenigsmann, E.A.Starke, Jr and P.E.Allaire: Acta.Mater. 44 (1996) 3069-3075.

6) D.Mitlin, U.Dahmen, V.Radmilovic and J.W.Morris Jr: Mater.Sci.Eng. A301 (2001)231-236.

 T.Kanadani, N.Nagata, M.Hukuhara, K.Nakagawa, K.Horikawa, K.Murakami and M.Hino: J.Jpn.Inst.Metals.79(2015)146-150 (in Japanese).

8) T.Kanadani and K.Nakagawa: Collected Abstracts of the 2010 Spring Meeting of the Japan Institute of Metals (in Japanese).

9) M.Hino, M.Hiramatsu, K.Murakami and T.Kanadani: J.Surf.Fin.Soc.Jpn. 54(2003)542-544 (in Japanese).

10) M.Hino, K.Murakami, M.Hiramatsu, K.Chen, A.Saijo and T.Kanadani: J.JILM 54. (2004)169-174 (in Japanese).

11) H.Abe: *Kinzoku Soshikigaku Jyoron*, Corona Pub.Co.Ltd, (1973) pp.214-220.

12) M.Ohta and F.Hashimoto: Trans. JIM 6(1965)9-14.

13) M.Ohta, T.Kanadani, A.Sakakibara, H.Yamada and M.Yamada: Phys.Stat.Sol. (a) 78 (1983)K23-26.

14) G.Itoh: Netushori Japan 33(1998)165-173 (in Japanese).

15) Massalskiet.al: *BinaryAlloysPhaseDiagrams*, Vol.1 American Society for Metals, USA, (1987). pp. 106-108.

16) Massalskiet.al: *BinaryAlloysPhaseDiagrams*, Vol.1 ,American Society for Metals, USA, (1987). pp. 184-186.

17) K.Murakami, M.Hino, M.Ushio, D.Yokomizo and T.Kanadani: Mater.Trans. 54 (2013)199-206.

18) K.Murakami, M.Hino, N.Nagata and T.Kanadani: J.Jpn.Inst.Metals 77(2013)599-603 (in Japanese).

19) G.Itoh, T.Izumi and T.Tohyama: J.Jpn.Inst.Metals 58(2008)15-21 (in Japanese).

| Alloy   | Cu     | Zn    | Fe    | Al   |
|---------|--------|-------|-------|------|
| Al-2%Cu | 1.97   | <0.01 | <0.01 | bal. |
| Al-2%Zn | < 0.01 | 1.95  | <0.01 | bal. |

 Table 5-2-1
 Chemical compoSition of Al-Cu and Al-Zn alloys (mass%).


**Fig.5-2-1** Surface structure of Al-2% Cu (AC) alloy specimen after furnace-cooling from 823K to 293K.



**Fig.5-2-2** Surface structure of Al-2% Zn (AZ) alloy specimen after furnace-cooling from 773K to 293K.



**Fig.5-2-3** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for AC alloy specimens; Oplated or  $\triangle$ unplated after furnace-cooling from 823K to 293K



**Fig.5-2-4** Relations between stress ( $\sigma$ ) and number of cycles to failure (N) for AZ alloy specimens; Oplated or  $\triangle$ unplated after furnace-cooling from 773K to 293K



**Fig.5-2-5** Hydrogen desorption rate vs. temperature for AC alloy specimens; 10µm plated, 1µm plated or unplated after furnace-cooling.



**Fig.5-2-6** Hydrogen desorption rate vs. temperature for AC alloy specimens; 10µm plated, 1µm plated or unplated after furnace-cooling.



**Fig.5-2-7** Quantity of discharged hydrogen between 293K and 623K for AZ alloy specimens; 10µm plated, 1µm plated or unplated after furnace-cooling.

## 第6章 総 括

6-1. 本論文の総括

自動車などを中心とした輸送機器産業では、CO<sub>2</sub>排出量削減・低燃費化に対する対策 として部材の一層の軽量化が重要な問題になっている。また、それに対応するため、こ れまで多用されてきた鉄鋼材料に代わり、軽量で加工性・耐食性に優れたアルミニウム 合金の適用が拡大している<sup>1)</sup>。

本研究では、軽量化に最も重要な材料の一つであるアルミニウム合金の微細組織の構造変化が、めっき処理および陽極酸化処理技術が耐摩耗性と耐食性ならびに装飾性を高めるなどの複合的な要求を満たす最適な表面処理技術の確立<sup>3</sup>を目的とした。また、そのためには基板表面の微細組織の解析が不可欠である<sup>3</sup>と考え、めっき処理等で得られる皮膜構造の基礎的知見<sup>4</sup>、ならびに熱処理後のめっき処理<sup>5</sup>や陽極酸化処理<sup>6</sup>がアルミニウム合金の光輝性<sup>7</sup>や機械的性質等<sup>8~11</sup>におよぼす影響についての検討内容を総括している。

本論文は、アルミニウム合金にめっき処理等が施された場合の表面特性、防食性・耐 摩耗性・意匠性等や機械的特性、ならびにめっき処理時に発生する水素が疲労強度<sup>12,13</sup> におよぼす影響に関した研究をまとめたもので6章からなっている。以下に、本研究に おいて得られた成果を各章毎に要約する。

第1章では、自動車産業を中心とする輸送機器において、地球環境改善に向けた CO<sub>2</sub> 排出量削減が重要な課題であることから、鉄鋼材料からアルミニウム合金材料への軽量 化による燃費向上とアルミニウム合金の用途別需要ならびに軽量化効果について述べた。 次に、アルミニウム合金の疲労強度、耐摩耗性、耐食性ならびに装飾性を高めるなどの 複合的な要求を満たす最適な表面処理技術を確立することの必要性ついて概説した後、 本研究の目的について述べている。さらに、第2章以降で実施した研究内容を個別に示 し、本研究の内容を明らかにした。

第2章は、アルミニウム鋳造合金への光輝性付与におよぼす各種表面処理の影響について述べたのち、アルミニウム鋳造合金の添加元素ならびに表面処理条件の影響について述べ、光沢度計((株)村上色彩技術研究所製、デジタル光沢計(GM-3D))により、

光沢度を求め、光輝性に及ぼす各種表面処理の影響を検討した結果、アルミニウム鋳造 合金の光輝性には、合金中に添加された添加元素が大きな影響をおよぼすことを明らか にした。

第3章では、新たに開発したアルミニウム鋳造合金(Al-Mg-Zn系)へのめっき処理に よる皮膜の密着性および光輝性について、アルミニウム合金への熱処理、電解研磨処理、 および下地亜鉛置換処理の影響を検討した結果、Al-Mg-Zn系アルミニウム鋳造合金に対 するめっき皮膜の密着性は、時効処理で生じる微細なT相(Al<sub>2</sub>Mg<sub>3</sub>Zn<sub>3</sub>)が下地亜鉛置 換処理によって脱落し、表面に微細な凹が形成され、そのアンカー効果によって向上す ることを示した。また、Siを含むアルミニウム鋳造合金へのめっき処理による光輝性の 低下は、機械研磨で生じる共晶Si部のうねりおよび化学的に安定なSi部の凸形成が主 因であることを示した。なお、このうねりによる光の散乱防止には、基板表面の硬度均 一化が有効であることを述べ、その原因を明らかにした。さらに、アルミニウム鋳造合 金へのめっき処理による光輝性の低下因子を、電界放射型電子プローブマイクロアナラ イザー(FE-EPMA)、透過電子顕微鏡(TEM)、光学干渉式表面形状観察装置、電界放射 型走査電子顕微鏡(FE-SEM)による観察・分析結果に基づいて考察した。

第4章では、アルミニウム鋳造合金(Al-Si 系)の機械的性質に及ぼす無電解 Ni-P めっ き処理の影響について考察するために、炉冷処理と時効処理を施した両熱処理材につい て疲労試験を実施し、得られた σ-N 曲線(S/N 曲線)から疲労強度を求めた。また、水素 吸蔵量の評価は、ガスクロマトグラフィー型の昇温水素脱離分析装置(検出器 熱伝導度 検出器)を使用し、無電解 Ni-P めっきの有無による試料表面に吸蔵された水素の放出挙 動を検討した。特に、炉冷処理材においてめっき処理後に疲労強度が低下するのは、亜 鉛置換処理およびめっき処理時に発生する水素ガスの一部が炉冷材中に入り込み、特に 高サイクル負荷中に試料表面の μm サイズ析出物とめっき皮膜の界面付近に集積し、微 視き裂発生に著しい影響を及ぼすことを明らかにした。

第5章では、先ず、析出挙動が第4章のアルミニウム鋳造合金(Al-Si系)に類似し、μm サイズ析出物がより顕著に生成されるアルミニウム鋳造合金(Al-Ge系)合金について、 熱処理後のめっき処理による疲労強度の変化ならびに昇温時の水素放出量を測定した。 次に Al-Si や Al-Ge 合金とは異なる析出挙動を示す Al-Cu および Al-Zn 合金についても 同様な検討を行った。それらの結果から、めっき処理による炉冷処理材の疲労強度低下の原因として、疲労試験時に水素が炉冷処理材の表面付近に存在する粗大な析出物と母相ならびに約数 10µm 厚さの緻密な非晶質 Ni-P めっき皮膜界面に集積し、微視き裂の発生を促進するとする前章での解釈の一般性を示した。

第6章は、本研究で得た成果と諸結果を、本論文の総括として示し結論とした。

6-2. 実用化への取り組み

第2章で述べたアルミニウム鋳造合金への光輝性に関する技術および工法は、「アル ミニウム合金成形品およびその製造方法」として、特許を出願<sup>14</sup>し、一部の製品に適用 されている。これは、AC4CH-T6 材およびそれと同等の強度を有した開発材料(Al-Mg-Zn 系)について、光輝性におよぼす各種表面処理の影響を検討したもので、従来の硫酸陽 極酸化処理では金属間化合物(Al<sub>3</sub>Fe)が優先的に溶解するため、不均一な酸化皮膜が形 成され、その結果、光輝性が低下した。一方、新たに開発した陽極酸化処理では、金属 間化合物(Al<sub>3</sub>Fe)が溶解せず、均一な酸化皮膜が形成され、その結果、光輝性を有し、 かつ耐食性も兼備した表面処理技術を確立することを見出した。

本論文の第3章3-1および3-2で示した研究結果は、硬質かつ化学的に安定なSiを含 有する AC4CH 材では、めっき前処理による機械的な除去および化学的な溶解反応が不 均一に生じる。その際、共晶Si部が凸になり、表面に凹凸が形成され、その表面の荒れ がめっき後の光輝性を低下させる要因となる。そのため、光輝性が要求される場合には、 多層めっきやめっきの厚膜化が必要になる。一方、Siを含有しない開発材(Al-Mg-Zn 系)は、AC4CH 材よりも均一な組織を有するため、開発材(Al-Mg-Zn系)に対するめ っき前処理での電解研磨の適用により、めっきの光輝性を向上させ、AC4CH 材への装 飾めっき(多層めっき)と同程度の光輝性を有することを見出した。この開発技術に対 し、「めっきが施されたアルミニウム合金鋳物およびその製造方法」とし、特許を出願 <sup>15</sup>している。本製造方法は、光輝性とめっき密着性に対応できる性能を有しており、本 研究における成果の一部である。

さらに、継続研究として、アルミニウム合金表面に、陽極電解処理で樹脂との接合性 を向上させる皮膜を創製する表面処理技術開発の研究にも取組んでいる。現在、軽量化 の観点より、鉄鋼製部品をアルミニウム合金と樹脂製部品の異種材料接合部材に置換す る要求が高まっている。アルミニウム合金表面には不活性な不働態膜が形成されるため、 アルミニウム合金と樹脂を接着・接合する際、十分な接合強度が得られないことが課題 となっている。そこで、アルミニウム合金表面に対して、樹脂との接合性および耐食性 を向上させる新たな表面改質技術を開発することを目的とし、「接合品の製造方法」と 題した特許を出願<sup>16</sup>している。本開発技術では、環境試験(高温放置,恒温恒湿,温度 サイクル試験など)による耐食性などの長期信頼性に加え、接着性に対しても高い性能 を有することが明確になっており、最終的には事業化を目指している。

## 参考文献

1) The Japan Aluminum Association: aluminum social contribution and ecology, metal industry guidance site metal Wonder Avenue (online),

<a href="http://www.metal-wonder-avenue.jp/">http://www.metal-wonder-avenue.jp/</a>, (see 2015-04-12).

2) C.H.Kissin: (1963) Finishing of Aluminum.

3) M.Hino, N.Nagata, K.Murakami, Y.Mitooka, T.Kanadani:pp5-10 Altopia, Kallosshupan (2015).

4) C.H.Kissin: (1963) Finishing of Aluminum.

5) Walton, C. J., and W King: (1965) ASTM Special Publication No. 175.

6) S.Wrrnick, R.Pinner and P.G.Sheasby: (1987) The surface treatment and finishing of aluminum and it alloys.

7) Aluminum surface technology: (1994) Handbook of light metal publication.

8) Fujio Namiya: (1997) Chemical polishing and electrolytic polishing Maki bookstore.

9) Plate and conditions of JIS H 4000: (1968) aluminum and aluminum.

10) JIS H 5202 aluminum alloy casting: (1992).

11) JIS H 5302 aluminum alloy die-casting: (1985)

12) C.Kittl: (1986) Intorodaction to Solid State Physics ,6 ed John Weley Sons.

13) M.Schlesinger, M.Paunovic: (2010) Modan Electroplating 5 ed., John Wiley Sons

14) Surtech Nagata Co.,Ltd., Okayama Prefecture: (2012) aluminum alloy molded product and manufacturing method thereof (Japanese Patent Application No. 2012-10796).

15)S.Kawai, H.Kanetuki, N.Nagata, C.Ibata, M.Hino,K.Murakami:(2011) aluminum alloy casting plated and a manufacturing method thereof (Japanese Patent Application No. 2011-005257).

16) N.Nagata, M.Hino K.Murakami:(2013) bonded article manufacturing method (Japanese Patent Application No. 2013-231462).

## 謝 辞

本研究を行なうにあたり、多大なる御指導およびご鞭撻をいただきました岡山理科大 学大学院工学研究科の金谷輝人教授に厚く御礼を申し上げます。また、本論文の作成に おきまして、様々なご助言をいただきました同研究科の清水一郎教授、蜂谷和明教授、 中川恵友教授ならびに福原実教授に深く感謝いたします。更に、論文作成等にあたり、 丁寧な御指導をいただきました広島工業大学大学院工学研究科 日野実教授に厚く御礼 を申し上げます。

本論文をまとめる上で、機会を与えて下さり、大変多くの御配慮をいただきました株 式会社サーテック永田 代表取締役社長 永田晋也様および同社取締役 永田靖人様なら びに社員の方々に心より感謝申し上げます。

また、本研究の遂行および本論文の内容に関しまして、的確な御助言ならびに実験的 支援をいただきました岡山県工業技術センター金属・加工グループの村上浩二様、國次 真輔様、村岡賢様、水戸岡豊様、平松実様(元岡山県工業技術センター)その他、多く の職員の方々に深く感謝いたします。

また、本研究の遂行にあたり、様々な面において、ご助言ならびにご協力いただきま した富山県立大学工学部機械システム工学科客員教授 永田員也様にも深く感謝いたし ます。