小野数の円分体への拡張

青木 美穂・紅林 周佑* 岡山理科大学理学部応用数学科 * 岡山理科大学理学研究科修士課程応用数学専攻 (2009年9月28日受付、2009年11月5日受理)

1 導入

小野孝氏が1986年に虚2次体の類数と小野数に関する予想を定式化した.その後,清水健一氏と西来路 文朗氏がこの予想が成り立たないことを[1]で示した.また両氏は,この予想を訂正し,[2]で正しい定 式化を与えた.ここでは[2]の結果が円分体の場合に定式化できるかを実例計算により検証する.

2 小野の予想

ここでは小野の予想について説明する.

 k_D を判別式 – D の虚 2 次体とする. $k_D = \mathbb{Q}(\sqrt{m})$ とおくと, D と m の関係は $m \equiv 2,3 \pmod{4}$ の とき $D = -4m, m \equiv 1 \pmod{4}$ のとき D = -mである. ここで w_D を,

$$w_D = \sqrt{-\frac{D}{4}} \ (D \equiv 0 \pmod{4}) \ or \ \frac{1+\sqrt{-D}}{2} \ (D \equiv 3 \pmod{4})$$

とおく. すると k_D の整数環は w_D を用いて $\mathbb{Z}[w_D] = \{a + bw_D \mid a, b \in \mathbb{Z}\}$ と表せる. また多項式 $f_D(x)$ を,

$$f_D(x) = N(x + w_D)$$

とおく.ここで N は k_D/\mathbb{Q} のノルム写像を表す.すると $f_D(x)$ は次のようになる.

$$f_D(x) = \begin{cases} x^2 + \frac{D}{4} & (D \equiv 0 \pmod{4}) \\ x^2 + x + \frac{1+D}{4} & (D \equiv 3 \pmod{4}) \end{cases}$$

定義1(小野数,虚2次体)

以下で定める自然数 PD を小野数という.

$$P_D = \begin{cases} 1 & (D = 3, 4 \text{ のとき}) \\ \\ \max\{ \nu(f_D(x)) \mid x \in \mathbb{Z} \cap [0, \frac{D}{4} - 1] \} & (D \neq 3, 4 \text{ のとき}) \end{cases}$$

ここで $\nu(n)$ は n を割る素数の個数である.また、その素数は相異なるとは限らない.例えば、 $\nu(6) = 2, \nu(9) = 2$ となる.

予想2 (小野孝,1986)

 h_D を k_D の類数とすると、全ての Dで次の不等式が成り立つ。

 $h_D \leq 2^{P_D}$

3 清水健一, 西来路文朗の結果

ここでは小野の予想に対する清水と西来路の改良について説明する.

小野の予想は[1]で成り立たないことが示された.反例の1つとしてD = 37123の場合があげられている.D = 37123のとき,類数 $h_{37123} = 17$,小野数 $P_{37123} = 4$ となる.よって, $h_{37123} > 2^{P_{37123}}$ となり予想の大小関係とは逆になる.

小野の予想は成り立たないが、次の関係が成り立つ事が[2]で示された.

定理3([2] Theorem 2.2)

 $q_D \epsilon_{k_D}$ で分解する最小の素数とすると、全てのDで次の不等式が成り立つ。

 $h_D < q_D^{p_D}$

4 円分体への拡張

ここでは清水,西来路の結果をもとに円分体への拡張を考える. $l \approx 3$ 以上の素数, $\zeta_l \approx 1$ の原始l 乗根とする. $k_l \approx \mathbb{Q}$ に $\zeta_l \approx 5$ 加した体とすると, k_l は,

 $k_{l} = \mathbb{Q}(\zeta_{l}) = \{a_{0} + a_{1}\zeta_{l} + \dots + a_{l-2}\zeta_{l}^{l-2} \mid a_{0}, \dots, a_{l-2} \in \mathbb{Q}\}$

と表せる.また, k_l の整数環は $\mathbb{Z}[\zeta_l] = \{a_0 + a_1\zeta_l + \cdots + a_{l-2}\zeta_l^{l-2} \mid a_0, \cdots, a_{l-2} \in \mathbb{Z}\}$ と表せる.多項式 $f_l(x)$ を,

 $f_l(x) = N(x-\zeta_l)$

とおく. ここで N は k_l/\mathbb{Q} のノルム写像を表す. すると $f_l(x)$ は次のようになる.

$$f_l(x) = (x - \zeta_l)(x - {\zeta_l}^2) \cdots (x - {\zeta_l}^{l-1}) = x^{l-1} + x^{l-2} + \cdots + x + 1$$

定義4(小野数,円分体)

次の自然数 P_l を小野数という.

$$P_l = \max\{
u(f_l(x)) \mid x \in \mathbb{Z} \cap [0, l-1]\}$$

ここで ν(n) は定義1と同様である.

 $h_l \in k_l$ の類数とし、 $h_l^+ \geq h_l^- \in$,

$$h_l^+ : k_l^+ = \mathbb{Q}(\zeta_l + \zeta_l^{-1})$$
の類数
 $h_l^- : h_l/h_l^+ (k_l の相対類数)$

とする. ここで定理3の類似として次の予想が立てられる.

予想5

 $q_l \epsilon_{k_l}$ で完全分解する最小の素数とすると、次の不等式が成り立つ.

 $h_l^- \leq q_l^{P_l}$

予想5が正しいことを1<100を満たす素数で確かめた.計算結果は次の表の通りである.

2

l	h_l	P_l	q_l	$q_l^{P_l}$
3	1	1	7	7
5	1	2	11	121
7	1	2	29	841
11	1	4	23	279841
13	1	3	53	148877
17	1	5	103	11592740743
19	1	5	191	254194901951
23	3	7	47	506623120463
29	8	7	59	2488651484819
31	9	7	311	281399112371155271
37	37	8	149	242935032749128801
41	121	8	83	2252292232139041
43	211	8	87	3282116715437121
47	695	8	283	41142576392052822241
53	4889	8	107	17181861798319201
59	41241	11	709	22756663464120116199753794497309
61	76301	8	367	329100478707380211841
67	853513	11	269	533672814240301731473788469
71	3882809	12	569	1151720764209211801514619585526561
73	11957417	10	293	4663115832631376345704249
79	100146415	11	317	3248268229328068909082939333
83	838216959	12	167	470541197898347534873984161
89	13379363737	10	179	33769941616283277616201
97	411322824001	14	389	1816746861309099139322282878629329641

表: l < 100 の素数に対する h_l⁻, P_l, q_l, q_l^{P_l} の計算結果

相対類数 h_l⁻ は [3] の表 (p412~) を,小野数 P_l は [4] の表を用いた.

表の結果からも分かるように 100 までの素数では予想 5 は成り立つことが分かる.しかし、 h_l の値に対して q_l P_l の値がかなり大きいので、もう少し小さな値で抑えられることも考えられる.

参考文献

[1] F. Sairaiji, K. Shimizu, A note on Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad., 77, Ser. A, 29-31(2001)

[2] F. Sairaiji, K. Shimizu, An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad., 78, ser. A, 105-108(2002)

[3] L. Washington, Introducton to Cyclotomic Fields, Second Edition, GTM83, Springer, New York (1996)

[4] 三島久典, 数学者の密室, http://www.asahi-net.or.jp/ KC2H-MSM/

On Ono's numbers associated to cyclotomic fields

Miho AOKI and Syusuke KUREBAYASHI*

Department of Applied Mathematics, Faculty of Science, *Graduate School of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku Okayama 700-0005, Japan

(Received September 28, 2009; accepted November 5, 2009)

In 1986, T. Ono conjectured that the inequality $h_D \leq 2^{P_D}$ held, where P_D is Ono's number and h_D is the class number associated to an imaginary quadratic field k_D with discriminant -D. F. Sairajji and K. Shimizu [1] proved in 2001 that Ono's conjecture did not hold, and they gave a modification to Ono's conjecture [2]. Namely, they modified the inequality to $h_D \leq q_D^{P_D}$, where q_D is the smallest prime number which spillts in k_D .

In this paper, we study an analogue of their results to the cyclotomic fields $k_l = \mathbb{Q}(\zeta_l)$, where l is an odd prime number and ζ_l is the primitive *l*th root of unity. We consider the polynomial $f_l(x) := N(x-\zeta_l)$, where N is the norm mapping from k_l to \mathbb{Q} . Then $f_l(x)$ is as follows:

$$f_l(x) = x^{l-1} + x^{l-2} + \cdots + x + 1.$$

We define the natural number P_l by

$$P_{l} := \max\{\nu(f_{l}(x)) \mid x \in \mathbb{Z} \cap [0, l-1]\}$$

where $\nu(n)$ is the number of prime factors of n. We call the natural number P_l Ono's number associated to the cyclotomic field k_l . We denote by h_l the class number of k_l , and by h_l^- the relative class number of k_l . Then we expect the following inequality which is an analogue of the result by Shimizu and Sairajji:

$$h_l^- \leq q_l^{P_l}$$

where q_l is the smallest prime number which spilits completely in k_l . We confirmed that this inequality was correct for the prime numbers l less than 100.

References

[1] F. Sairaiji, K. Shimizu, A note on Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad., 77, Ser. A, 29-31(2001)

[2] F. Sairaiji, K. Shimizu, An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad., 78, ser. A, 105-108(2002)

[3] L. Washington, Introducton to Cyclotomic Fields, Second Edition, GTM83, Springer, New York (1996)

[4] H. Mishima, http://www.asahi-net.or.jp/ KC2H-MSM/

Keywords: Ono's numbers; cyclotomic fields.