ベキ乗の先頭桁，無理数回転および連分数展開

高嶋 恵三 • 長濱 紗智＊• 林 紘＊岡山理科大学理学部応用数学科

＊岡山理科大学理学研究科修士課程応用数学専攻
（2008年 9 月 30 日受付，2008年11月 7 日受理）
はじめに
ベキ乗 a^{n} の 10 進法表示における先頭桁の数字について，高嶋•小谷［3］では， 1 から 9 までの，各数字 の観測分布と極限分布との差を，χ^{2} 検定を利用して計算し，その漸近挙動を調べた。そこでは，

- 1，200，000 程度の極めて長い間隔で増大•減少を繰り返す．
- 7 の $1,200,000$ 乗の付近では χ^{2} 検定の値が 50 を超える，極めて不可思議な現象を報告した。

例えば， 2 のベキ乗の場合，

図 1：$a=2$ の場合

一方，$a=7$ の場合には，図 2 に示されるように， $2,500,000$ 程度の「周期」で大きな「増減」を繰り返す という，一見 「異常な」 現象を示す。ここでは，この現象について $\log _{10} a$ の連分数展開との関連から考察する。

図 2：$a=7$ の場合 $n=10,000,000$

ベキ乗と無理数回転

自然数 a に対して，a^{n} が ℓ 桁（10進法）で，先頭の桁が k

$$
\Longleftrightarrow \quad k \times 10^{\ell-1} \leq a^{n}<(k+1) \times 10^{\ell-1}
$$

常用対数をとると

$$
\Longleftrightarrow \quad \log _{10} k \leq n \log _{10} a(\bmod 1)<\log _{10}(k+1)
$$

第 2 項は無理数 $\log _{10} a$ による無理数回転．

定理（Weyl の補題）S^{1} 上の任意の Riemann 積分可能な関数 f と無理数 θ に対して

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(R_{\theta}^{k}(z)\right)=\int_{S^{1}} f(z) \lambda(d z), \quad \forall z \in S^{1}
$$

但し，S^{1} は複素平面上の単位円で，

$$
R_{\theta}:\left\{\begin{array}{ccc}
S^{1} & \rightarrow & S^{1} \\
z & \mapsto & e^{2 \pi i \theta} z
\end{array}\right.
$$

λ は S^{1} 上の通常の測度（弧長の自然な拡張）で，$\lambda\left(S^{1}\right)=1$ ，を満たすものとする．

Weyl の補題より，a^{n} の先頭桁の数字は， 1 から 9 までのすべての数字が出現し，かつ $n \log _{10} a$ は漸近的に $[0,1)$ 上に均等かつ稠密に分布する。

$$
\frac{\sharp\left\{m ; a^{m} \text { の先頭桁 }=k, m \leq n\right\}}{n} \xrightarrow{n \rightarrow \infty} \log _{10}(k+1)-\log _{10} k
$$

無理数回転と連分数展開

無理数回転の一様分布への収束の速さを測る量として，discrepancy の概念が一般的であり，その漸近挙動に関して多くの研究があるが，ここでは，それらを踏まえて， $\log _{10} 7, \log _{10} 2$ などの連分数展開と部分分数 による近似について考える。
$\log _{10} 7$ の連分数展開は以下のようである（数式処理ソフト Maple による計算結果）：

$$
\log _{10} 7=\frac{1}{1+\frac{1}{5+\frac{1}{2+\frac{1}{5+\frac{1}{6+\frac{1}{1+\frac{1}{4813+\frac{1}{1+\frac{1}{1+\cdots}}}}}}}}}
$$

また，さらに先までの部分分母を求めると，以下のようになる ：
$1,5,2,5,6,1,4813,1,1,2,2,2,1,1,1,6,5,1,83,7,2,1,1,1,8,5,21,1,1,3,2,1,4,2,3,14,2,6,1$ ， $1,5,2,1,2,4,26,2,6,1,5,1,1,2,2,3,6,2,2,103,2,2,1084,1,1,1,1,12,1,8,5,1,3,4,1,4,1,8$ ， $3,2,4,3,32,1,1,2,1,2,1$,
ここで注目するのは， 7 番目に出てくる 4813 という，大きな部分分母である．この項までの部分分数は

$$
\frac{2074774}{2455069}
$$

となり，この部分分数の分母 2455069 は， 7^{n} の先頭桁の数字の出現頻度の漸近挙動に見られた，「周期」 とほぼ一致する．これに対して $a=2,3,4,5$ 等では

$$
\log _{10} 2=\frac{1}{3+\frac{1}{3+\frac{1}{9+\frac{1}{2+\frac{1}{2+\frac{1}{4+\frac{1}{6+\frac{1}{2+\frac{1}{1+\cdots}}}}}}}}}
$$

$3,3,9,2,2,4,6,2,1,1,3,1,18,1,6,1,2,1,1,4,1,42,6,1,4,2,3,1,2,6,1,3,4,1,8,1,4,1,2,2$ ， $7,1,4,1,1,3,3,1,3,1,1,7,6,1,5,10,2,2,1,8,1,2,16,24,1,6,1,8,1,1,5,1,1,1,1,1,2,1,1,3$ ， $7,1,1,10,3,2,1,3,1,3,1$

$$
\log _{10} 3=\frac{1}{2+\frac{1}{10+\frac{1}{2+\frac{1}{2+\frac{1}{1+\frac{1}{13+\frac{1}{1+\frac{1}{7+\frac{1}{18+\cdots}}}}}}}}}
$$

$2,10,2,2,1,13,1,7,18,2,2,1,2,3,4,1,1,14,2,44,1,3,1,14,2,2,1,1,2,30,1,1,3,2,4,3,7,2$ ， $6,8,1,2,7,62,1,3,4,60,1,89,3,3,1,1,7,3,3,2,4,2,2,1,25,2,6,2,2,1,3,2,2,1,1,2,5,1,1,1$ ， $1,1,3,66,1,1,15,1,2,1$,

$$
\log _{10} 5=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{9+\frac{1}{2+\frac{1}{2+\frac{1}{4+\frac{1}{6+\frac{1}{2+\cdots}}}}}}}}}
$$

$1,2,3,9,2,2,4,6,2,1,1,3,1,18,1,6,1,2,1,1,4,1,42,6,1,4,2,3,1,2,6,1,3,4,1,8,1,4,1,2$ ， $2,7,1,4,1,1,3,3,1,3,1,1,7,6,1,5,10,2,2,1,8,1,2,16,24,1,6,1,8,1,1,5,1,1,1,1,1,2,1,1$ ，

$$
3,7,1,1,10,3,2,1,3,1,3
$$

であり，「異常に」大きな部分分母は観測されない。
より一般的に，m 進法で a^{n} の先頭桁の数字の観測度数を考える場合， $\log _{m} a$ が問題になり， $\log _{10} 7$ のよ
うに，はやい段階で部分分母に異常に大きな数が出現する例も Mapleを利用して調べたが，その結果と χ^{2}検定の漸近挙動の結果については，別の機会に報告する予定である。

参考文献

［1］Berger，A．，：Chaos and Chance，Walter de Gruyter（2001）
［2］Weyl，H．，：Über die Gleichverteilung von Zahlen mod．Eins，Math．Ann．77， 313 － 352 （1916）
［3］高嶋恵三，小谷真美 ：べき乗の先頭析の数字について，岡山理科大学紀要 第 42号 A，7－11（2006）

Leading digits of a^{n} ，irrational rotations，and continued fraction expansions

Keizo TAKASHIMA，Sachi Nagahama＊and Hiroshi Hayashi＊
Department of Applied Mathematics，Faculty of Science，
＊Graduate School of Science，
Okayama University of Science，
1－1 Ridai－cho，Okayama 700－0005，Japan

（Received September 30，2008；accepted November 7，2008）

Takashima and Otani［3］reported that the asymptotic behavior of leading digits of 7^{n}（ $n=1,2, \ldots$ ）to the limit distribution，shows extraordinary phenomena，that is，when n is near $1,200,000$ or so，the values of χ^{2} test is bigger than 50 ，and they repeat up and down with＂period＂about $2,400,000$ or $2,500,000$ ．

In this report，we discuss those phenomena，with considering continued fractions of $\log _{10} 7, \log _{10} 2$ ，and so on．We obtain the following continued fraction expansion of $\log _{10} 7$ ：

$$
\log _{10} 7=\frac{1}{1+\frac{1}{5+\frac{1}{2+\frac{1}{5+\frac{1}{6+\frac{1}{1+\frac{1}{4813+\frac{1}{1+\frac{1}{1+\cdots}}}}}}}}}
$$

and we have partial fraction up to 7 th term，$\frac{2074774}{2455069}$ ．In contrast to the case of $\log _{10} 7$ ，we have the following expansions for $\log _{10} 2$ ：

$$
\log _{10} 2=\frac{1}{3+\frac{1}{3+\frac{1}{9+\frac{1}{2+\frac{1}{2+\frac{1}{4+\frac{1}{6+\frac{1}{2+\frac{1}{1+\cdots}}}}}}}}}
$$

We have similar expansions for $\log _{10} 3$ and $\log _{10} 5$ etc．

Bibliography

Berger，A．，：Chaos and Chance，Walter de Gruyter（2001）
Weyl，H．，：Über die Gleichverteilung von Zahlen mod．Eins，Math．Ann．77， 313 － 352 （1916）
Takashima，K．，and Otani，M．：On Leading Digits of Powers a^{n} ，Bulletin of Okayama University of Science， 42 A，7－11（2006）

Keywords：irrational rotations；Weyl＇s lemma；continued fraction．

