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Elimination of certain crossings of braids
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We shall show some equations of the form FDG=D in n-braid group B, with standard generators 615 625... 4 Gpye
These equations represent certain geometric deformations, and are used in [S] to reduce the number of braids of
which Jones polynomials are calculated.
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1. Introduction

In this article we treat the n-braid group B, with standard generators o, o, , ... > On-1- It is well known that B,
is generated under fundamental relations representing some geometric deformations.

We extend the relations to equations which represent more complicated deformations. These equations are

useful in computer programs [S] to generate knots inductively and to calculate Jones polynomials of generated
knots.

2. Braid group
In this section we give definition of braid groups. We fix one rectangular box. On each of the ceiling and the
floor of the box, we arrange n points, and label them with the numbers 1,...,nin order.
An n-braid is a set of n strings of which one joins one point of the floor and that of the ceiling,
Let o; be a braid satisfying the following conditions (see Figure 1).
@) A string joins i-th point of the ceiling to (i+1)-th point of the floor, an other string joins (i+1)-th point of
the ceiling to i-th point of the floor, and the former crossing over the latter.

b) o; has just one crossing described in a).
.

\\/ //,./—/
— \
Figure 1. o;
Two braids are called of the same type, when we can deform one of the braids to the another, without tearing
strings.
For braids b; and b,, we obtain new braid b by connecting the point of the floor of b, and the point of the
ceiling of b, in numeric order. We call this b the product of b; and b, (see Figure 2).
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Figure 2.
Let B, be all the n-braids where we identify n-braids of the some type. B, is a group with the above products.
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This group is called a braid group. The group B, is generated by 61, 02, ..., Ou1-
In this article we use the following notations. For braids X;, Xa,..«» Xv1, Xvs H,L, X; denotes the product
X, X;. .. Xv1 X,. We fix the notations

@.n g=+1,m=%1,i=1,...,0-1,j=1,...,0-1.

3. The fundamental relations of the braid group
The relations (3.1) and (3.2) below represent the geometric deformations of the braid as Figure 3.

G.1) o] 6, 0] = 0140/ O
(32) olah 0" = 0,10 04, & = E1
We have further
(3.3) oje? = atoy, li-jl > 1, (8,6)= (1L, ), (£ L,F),

(3.4) ojoTo]'c;* = ajo;, |i-j| = 1
I STy
M /)/ @ e
(3.1) (m=1) 3.2)(a=1,m=—1)
Figure 3.

The n-braid group B, generated by 61, 62,..., On1 with fundamental relations (3.1),(3.2),(3.3), and (3.4) (see

| - k\l\ \/\U\ @%%

3.3) (3.4) (e=1l,m=—1)
Figure 4.
The relation (3.4) can be written as follows.
i+1
3.5) ot ( Lomom ot = ol
A=i+]
i—1
3.6) ot Ilomom. )05 = ol'ol",.
A=i—1

We extend these equations to more generic form in the next section.

4. Elimination of crossings
In this section, we shall show some equations of the form 67 Do, ? = D with braids D satisfying certain

conditions. The equations represent deformations which reduce crossing numbers of certain braids as Figure 5.
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Figure 5.
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Theorem 4.1. For any positive integer v, it holds that

ity v ity
& m__m —& m__m
4.1 o ( HaAaA_l)aH}, = HO'AJA_,.
A=i+l A=i+1

Proof. The equation (4.1) is true for =1 by (3.5).
Assume (4.1) is true for y=K, i.e.,

i+K i+K
£ m__m —-€ m__m
o, ( HO'AO'A_I )O, x = HO'AO'A_I .
A=i+ A=i+
When y=K+1, the left hand side of (4.1) becomes
i+K+1 i+K
3 m_.m —& — & m_.m m m —&
g; ( HO'AO'A—l )0ixq = 0;( H"'A 04-1)0:k101:k0ii g1y
A=i+] A=i+]
i+K
— & m__m —& m m
=0, ( H"A 04-1)0:1k0;1 5110k
A=i+]
(by 3.1)if m=—¢ and by (3.2) ifm=¢)
i+K
_ m_m m m
= ( I—-[" 404-1)0iig 110k
A=i+1
i+K+1
— m_.m
= 0.0, ;.
A=i+]

Theorem 4.2. For any positive integer v, it holds that

i—y i—y
@“2) ' o; ( HJZ‘JZ'H o5, = Haj’aj’ﬂ .
A=i—1 A=i—1

Proof. The equation (4.2) is true for v=1by (3.6).
Assume (4.2) is true for y=K, i.e.,

—-K i—K
o ( HO'Z' 04,)0, % = Ha;’oj'ﬂ .
A=i—1 A=i—1
When y=K+1, the left hand side of (4.2) becomes
i—(K+1) i—K
3 m_m —& _ & m_m m m —&
o; ( 0404410, x1y = 0, ( Ha' 40 441)0i—(g1)0, i—(k+1)+10i—(x+1)
A=i—1 A=i—1
i—K
_ £ m_m m m —
=0;( HUA 041)0,_g10;" 0, ¢,
A=i—1
by 3.1)ifm=-¢ andby (3.2)ifm=¢)
i—K

m__m m m
( HGA 0,441)0;_g 10, ¢
4

=i—1



4 Kanako SuTou

i—(K+1)

_ m_m

- I—IO-A 6A+l .
A=i—1

We can also cancel crossings like Figure 6.

b= < G = Sy =

Ve \ = v
Figure 6
That is
Theorem 4.3.
e+l +1 1 _ +1 1
4.3) 6;0,,,0; _la 0,,.10; _10' = a,ﬂa _la' a,+10' _,,
£ _#] m_¥l1 _ m £l
44 g, 0'+lo' la 0,,.10; —1‘7 = 0',+10' _10' a,ﬂa,_l,
e __*1 m__Fl — m__Fl
4.5) 0,0,,,0; —10' 0,.10; _10' a,ﬂa _10' a,ﬂa _1,

where in each equation, all the double signs correspond to each other.

Proof. By (3.3), the left hand side of (4.3) is equals to

e:hl +] _x1 _ e 1 1+l 1 _+1
oihoollolnelo " = 6/0,0, 0.0, 010, '
(by G.1))
1 e 131

= o260 01000110,

®y 3.1 if £=%1andby 32)if £=F1)
= o 0t0 olh0 0] 0.,

(by 32)if =% 1andby B.1)if e=F 1)

_ eS| —e _x1 __*1
= 1—16 0;410; 10,10} 04

(by 3.3))

1 1 &l 1
0:210,0,40, 0,y

+] _+1

= O'x—lo'mo' 0',+10' —1

(by 3-2))
+1 1

0/n01=10] 0410 %
(by (3.3)).

And this equals the right hand side of (4.3).
(4.4), (4.5) also hold to reform as the proof of (4.3).

Theorem 4.3 can be extended as Figure 7.
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Figure 7.

Thus
Theorem 4.4. For any positive integers vy, Yrpoeees¥rgs Vo oeu sVpss, PiyeeesPas Q... Q5 Satisfying

Pi;. - P&, - . ,qe # i1, i, i+1 and vy, ... Vyss £ 12, 1, i+1, i+2, the following equations hold

d Yr1 Yr2 7r3
4.6) af(Ha:: )H { (Ha' " )o H(Ho ")o, (Ha ~)o;!
8- r- s=1
Yra
(IIsp) ,+1(l_Icr il L oul Ha % )o*
s=1 6,=1
Pri ?r2 ¥r3
- (Ho- ")H {(Ha "ot (Lal o, (Tot o
6,=1 s=1 s=1
Yra Prs
Ha )0 +1(H0' D T Ha'"” ),
s=1 6,=1
Yri ?r3
@.7) ot (Ha"“" )H RO DL (Ha o (ol yor
6,=1 r=1 s=1 s=1
Yra
(HO' ’“) 1+1 (HO' ”s 1—1 }( HO' * )O'
s=1 6,=1
Pr1 Yra Vr3
- (Ha'"‘")H A DL ,+1(Ha ") ; ,(Ha ' Yo"
é,=1 r=1 s=1
Yra Vrs f
dlo?a7 dIopye?, J1Tom)
s=1 s=1 6,=
Yri ¥r2 ?r3
3) a(Ha“)H {dIeye +,<Ha ")g, ,(Ha )"
6,=1 r=1 s=1
Yra Prs
(I Lo7 (Ha;’;';s Yol K Ha;": )o, *
s=1 s=1 8,=
d b Pri Pr2 Pr3
= (Hﬂ;n: )H { (HO' "') ,+1(Ho ’"’) i (Ha ”3)0-
6,=1 r= s=1
Yra ¥rs f
(Ha:;m o7 (1ls" =)o, T Ha;":)
s=1 s=1 6,=

Proof. By (3.3), the left hand side of (4.6) becomes
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2 Ta 15
(Ha'"’" )o; H {(Ha "), ety Y L (na ”’)G*I(Ha"'”‘)a,ﬂ(na""”

6,=1 r=1 s=1
o, ° (‘_[-..[a""’2
0,=1
it} 13 Jal s
m m m 11 m m
(Ha % )0 | (Ha m )a,H(I—Ia ’“)a,_,(Ha " )] (Ha "‘)a,+1(l_[a ")ar,
6,=1

vee

Yr1 Y12 N3 Y14 hs f
dLezai dlotetid Lol et daati I lele Jor (o
s=1 9,=
pal) N5
- (Ha'”“' n (Ha m )(I_Ia’"“ (Ha =y (afmy (1ol
6= s=1 s=1

cese

r1 Y12 Y15 S
1o o] ”’)(Ha ”’)(Ha"'"‘ a7 y JITot)
6,=1
0; (61 0,21 0] Lo o) (67 0141 07 oin o)
(b}’(3-3))
v 215
- (I—Ia"'“ " (Ha'""‘ )(Ha "’)(Ha ”’)(I—Ia "‘)(Ha'”’”
s=1

cee

Yr1 Y12 N3 Y14
(Ha m )(Ho - (Ha *”)(Ha’”*")(Ha ) }(Ha
6,=1
1+l 1 141l 41 2l
(07 aii—l a;ﬂ O'itll o';h—l ~f-(°'ii-1 o, "'it O 0:2)
(by Proof of Theorem 4.3)
Yra Yr3
- dT )H {(Ha Haadlolat deimer

6,=1

Pra Prs
dlo7rat L Ialyol, e Ha

-1 6,=1

Thus we obtained the right hand side of (4.6). (4.7) and (4.8) are proved in the similar way.

We now show equations representing Figure 8.

Figure 8.
Theorem 4.5. For any positive integers y and t;,... , t, it holds that

)

.
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i+y A
4.9) (Ha X Ha” ) H = Ha,’: J
A=i A=i+y J=1

ift#i-1, i, i+y, i+y+1 for allj.
Proof. When t;<i-2 or i +y+2=t,, the left hand side of (4.9) becomes

ity i+y

(H )a”'(na“’)( Ha )= ot (Il )(Ha“f X H
A=i

A=i+y A=i+y

(by (3.3)).
When i+1=t,<i+y-1 and p = t;—i, the left hand side of (4 9) becomes

o1 ol ot a* K
0' 0'.+1 <« Opp 10',+p i+p+1 0'i+p+2 e Oy, O (1_-[0' X H
A=i+y

_ +1 :I:] +1 Hy
= O" o"+l ces o".+ﬂ_l i+p '+ﬂ+10' Ul+p+2b ’+7 (Ha )( HO-

‘I+y
(by 3.3))
1 1
= o'a ... Orupt Ofipst Orag Oragar P (Ha"" X H
_l+y
by B.1)ifp==+1 andby (3.2) p=F1)
1 1 1 1
= 00, a1} ... Olrpt Olign Orng Origr - o (Ha” 't H
_,+7
(by (3.3)
1 #
= 6 0' ax+] o-:-ﬁ—l o-t+ﬂ+1 at+ﬂ o-+ﬂ+2 1+7 (I—IO' ! )( H
A=i+y.
ity
= a,’l“(Ha )(Ha"’ X Ha
A=i A=i+y
Thus the left hand s1de of (4.9) is equal to
i+y
(I o )(Ha"f X Ha
A=i A=i+y

Applying the same argument to t,, t, .. . » b, we have

A i+y
(Ha,’:’ X Ha X Ha'
Jj=1 A=i

-I+7

By the same arguments, we have
Theorem 4.6. For any positive integers y and t,, ... ,t, it holds that
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i A ity A
(4.10) (o2 x Lo x 1ol = Io
A=i+y j=1 A=i j=1

if i-1>t;, i+y+1< for all j.
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