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Abstract

The dynamic multiple measuring method, that is, the double measuring method or its improved version,
provides not only a precise calibration procedure of linear sensors, but also a linear system identification
method whose results are independent of dynamics of measuring devices. The purpose of this tutorial paper
is of four folds: 1) to give a brief review of Gauss’ double weighing method which has been used for many years
as a substitution method for mass measurement; 2) to present a new mathematical interpretations to the
double weighing concept, which constitutes the background of its extension to dynamic multiple measuring
methods; 3) to describe the influence of measurement noise on the results obtained by the improved double
measuring methods; and 4) to suggest their potential applications in linear measurement processes with a
few numerical examples.
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1. Introduction
The differences in dynamics among

devices are identified as mathematical models;
the identified models are realized as filters;

measuring devices affect the measured results
when plural devices are simultaneously used
for measurement of physical quantities. The
dynamic multiple measuring method, namely;
the “double measuring method” and its
improved version, the “improved double
measuring method”, was developed to remove
such differences in dynamics from the
resulting values [11,[2]. In another word,
they provide the methods for relative
compensation of the differences in dynamic
characteristics of measuring devices. That is;
the differences in dynamics among measuring

the filters are implemented to the measuring
system; and then the differences in dynamics
are relatively compensated.

The effectiveness of the relative
compensation was proved in an experimental
measurement system for calibration of
accelerometers [38] and that for a sound
transmission loss [4].

These methods are initially proposed under
the assumption of a measurement noise being
to be ignored. In practice, however, measuring
noises cannot be ignored, and analysis of their
influence on the resulting values has been
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desired.

Accordingly, the influence of measurement
noise has also been investigated on the results
obtained by applying the improved double
measuring methods [5]. The analytical
investigation as well as a numerical
experiment has then revealed that the
influence is appeared as signal-to-noise ratio
at an observed output and can be removed in
principle when the improved double
measuring method is applied to the linear
system identification.

The purpose of this tutorial paper is of four
folds: 1) to give a brief review of Gauss’ double
weighing method which has been used for
many years as a substitution method for mass
measurement; 2) to present a new
mathematical interpretations to the double
weighing concept, which constitutes the
background of its extension to dynamic
multiple measuring methods; 3) to describe
the influence of measurement noise on the
results obtained by the improved double
measuring methods; and 4) to suggest their
potential applications in linear measurement
processes with a few numerical examples.

2. Basic Concept of Gauss’ Double Measuring
Method

—G

v

— G ——

v v

mg Mg

Fig. 1 Schematic of a balance beam in
equilibrium

Let us briefly recall of the basic concept of
Gauss’ double weighing method using the
schematic as shown in Fig. 1. It is well known
that the fundamental relation for a balance
beam in equilibrium is given by

mgG, = MgG, , or mgG, - MgG, =0, ... )

where it is assumed that the beam is rigid

body and that the loading points, the fulerum,
and the center of gravity of a balance beam are
located on the same line. In Eq. (1), m
denotes the mass value of a sample weight to
be measured, Mis the mass value of standard
weight, and g is gravity constant. Gi and G
are the lengths of left and right arms of the
balance beam, respectively.

Gauss’ double weighing method [1] consists
of the following three steps.
1) First measurement:

Putting a sample weight on the left
goods-plate of balance, a manipulation is
carried out by changing the combination of
standard weights on the right goods-plate
to settle the balance beam in equilibrium
position. In the equilibrium, we get

Gmg-G,M,g=0. ...(La)

2) Second measurement:

Putting the sample weight on the right
goods-plate, a gimilar balancing
manipulation is conducted by changing the
combination of standard weights on the
left goods-plate. In the equilibrium, we
get

GM,g-G,mg=0. ...(Lb)

3) Calculation of the mass value:
By means of the balanced mass values,
M and M, of standard weights in the first
and second measurements, the mass value
to be measured is calculated by using the

following relation;
m= (MM, ;M—';& o)

Remarks 1:  As to Eq. (1) we could give a new
interpretation that the equation implies the
coincidence of output signals from two linear
systems whose transfer characteristics are
given by Gi1 and G, respectively. That is to
say, the quantity Gi mg can be considered as
the output value of a linear system Gi if we
consider the mg as the input level to the
system. Similarly, the quantity Gz Mg becomes
that of a linear system G: for the input level
Mg.
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Fig. 2(a) Measurement 1
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Fig. 2(b) Measurement 2

Figures 2(a) and 2(b) show the block
diagram which illustrates the essence of a new
interpretation to Gauss’ double weighing
principle from a system-theoretic viewpoint.
Figure 2(a) illustrates the input-output
relationships in the first measurement when
the sample weight is given to the Gi-system. In
other words, the sample weight is put on the
left goods-plate of a balance. Figure 2(b) does
those  relationships for the second
measurement.

The knowledge of mechanics teaches us
that the input to the m-G: system or the M-G:
system is acceleration of gravity and the
output is the moment of force applied to the
left or right arm of the beam, respectively.
Accordingly, we can write y1(d = w(d and
(9 = w(d in equilibrium, thus we get Eqs.
(1a) and (1b). Elimination of Gi and G:from
Eqs.(1a) and (1b) yields the desired formula (2)
which determines the mass value m.

Since the resulting formula (2) is
independent in length of left and right arms of
balance, this follows that static characteristics
of two linear measuring systems, Gi and Gg,
does not make any influence on the resulting
value in case of input level measurement
introducing the concept of double weighing
procedure.

Consequently, it is quite natural to reach
that the concept could be equally applied to the
dynamic compensation of two linear dynamic
measuring systems used under a conventional

static or specific dynamic condition.

3. Extended Version- Principle of the Double
Measuring Method

3.1 Basic Idea of the Double Measuring

Method

Let us consider the following measuring
situation to extend the original double
weighing procedure to dynamic measurement
problems.

We prepare a pair of linear measuring
devices whose transfer functions are G«(s) and
G9), and a standard sensor M whose transfer
function M9 is known. Here we assume the
case where Gi(s) and Gi(9) are nearly the same
but unknown. We then consider the problem
to determine the dynamical characteristics of
an object sensor m whose transfer function
m(9) is unknown through measurement of the
transfer function ratio of m(s) to M9 [1].

X,() m(s) | — G, ()| — F,(5) = G (sIm(s)X(s)

M(s) [ Gy()|— U,(s) = Gy (M ()X, (s)

Fig. 3(a) Measurement 1

X,(® M(s) G,(s) Y,(8) =G, (s)M(8)X,(s)

m(s) [ —| Gy()|— U, () =G, (s)m(s)X,(s)

Fig. 3(b) Measurement 2

Measurement is conducted in the following
steps:
1) First measurement:

After connecting respectively the object
sensor m to measuring device Gs and the
standard sensor M to measuring device G,
the first measurement is carried out under
a suitable input excitation, xi(#), and the
output signal yi(d and w(d are
simultaneously recorded respectively by
the corresponding measuring instruments.
As an input-output relationship we have
then the following relation;

¥,(5) = G,(s)m(s) X, (s) .3
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and
U,(s) = G, (s)M(s)X,(s). ..(4)

Elimination of Xi(¢) from Eqs.(3) and (4)
then gives us the following relation.

K _ GoIms) _G,(9) ms) g
U (s) G,(s)M(s) G,(s) M(s)

where ¥i(s) and Ui(9) are Laplace transforms
of (9 and ui(2), respectively.
2) Second measurement:

Exchanging the connecting positions of the
standard device M and the object device m in
the measuring systems, the output signals,
(D and w(d), are recorded under another
suitable input excitation, xz(2).

Similarly, we have the following relation;

56) _GOME _Gs) Ms) (g
Uys)  Gy(sIm(s) Gy(s) m(s)

where ¥2(9) and [k(s) are Laplace transforms
of y2(#) and w(d), respectively.

Elimination of G«(s)/Gxs) from Eqs.(5) and
(6) gives us

), (s) _| m(s) 2, (D
U, (), (s) | M(s)

Consequently, it turns out from Eq.(7) that
we can evaluate the dynamical characteristics
of the object sensor m in terms of the transfer
function ratio m(s)/Ms) without any
influence of measuring device dynamics Ga(s)
and Gi(9).

Remarks 2: Let us explain a few mathematical
aspects of the double measuring method. If we
consider the transfer function ratio m(s)/Ms)
and Gi(9/G9 as a single parameter, we
understand that Eq.(3) includes two unknown
parameters; m(9/Ms and G9/GK9.
Therefore, one more equation is necessary to
golve  m(9)/Ms)  independently  from
measurement. Then, the second measurement
is conducted to provide this second equation of
Eq. (4).

3) Evaluation of the transfer function ratio

m(9)/ M s):

By applying the linear system

identification method with these output data

stored in memory during the first and second
measurements, we can obtain the square of
transfer function of a virtual linear system,
which is defined as follows:

F%;):M, ...(8)
Y,(s) )
hence Y11(s) and ¥21(9) are Laplace transforms
of input and output signals of the virtual
linear system, respectively defined as

() = K(6U,(9), Yy(8)=U,()E(s). .9

Since the virtual transfer characteristic
Fx(9 has once been obtained, the transfer
function Hs) of a relative compensation filter
(calibration filter) can also be obtained as the
square root of transfer function of the virtual
linear system. Since we can easily implement
the compensating filter A9 by means of
analog or digital devices, it turns out that the
unknown dynamics of the object sensor m is
given in principle as follows:

m(s) = F(s)M(s). ...(10)

3.2 Improved Double Measuring Method

If it is possible to give the identical input
excitation to the two measuring devices, we
can replace the second measurement block
diagram of Fig. 3 by that of Fig. 4.

X,(s) m(s) |—| G,(s)}— ¥,(s) = G,(s)m(s) X, (s)

M(s) G,(s) — U,(9) = G, (M ()X, (s)

Fig. 4(a) Measurement 1

X,(s) G, () —Y,(8) =G,(£)X,(s)

Gy()— U, () =G, ()X ()

Fig. 4(b) Measurement 2

Accordingly, the improved version is stated as
follows:
1) First measurement:

The measurement is the same as the first
measurement of the double measuring
method.
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2) Second measurement:

Giving the identical input excitation
directly to the two measuring devices G«9) and
G9), the output signals, y2(9 and w(d, are
recorded. We have then the following relation
as the substitute for Eq.(6).

%) _Guls)
U,(s) Gy(s)

...

From Egs. (5) and (11) we have the relation as
follows:

K$)Uy(s) _ mls)
U9 M)

...(12)

Consequently, we can obtain the required
ratio m(9)/Ms) in terms of Eq. (12).

This represents the fundamental relation of
double measuring method, the extended
version of Gauss’ double weighing method,
which is applicable to linear dynamic weighing
or measurement processes.

4. Novel Method for Linear System
Identification Independent of Sensor
Dynamics

We consider the problem to identify the
dynamics of a linear system 7" whose transfer
function is 7(s). Let us assume the input and
output signals have the same kind of physical
quantity. = We prepare a pair of linear
measuring devices whose transfer functions
are G{9 and GKs). for observation of the
input and output signals, but Gi(9) and Gi(9).
are assumed unknown.

- 1) Ti® |—| G8) |—V,(x)=G,m)TixXls)

Gyl8) (— v, ix)= G X

Fig. 5(a) Measurement 1
X9 ‘[ G,(8) |[— Y:i=)=G, () Xin)
G,(8) |— U, ix)=G, (s)X,ln)

Fig. 5(b) Measurement 2

Figure 5 illustrates the block diagram of
measurement by the novel method.
Identification consists of two measuring
processes; the first measurement and the
second measurement.

1) First measurement:

The measurement is the same as that of
conventional identification method. After
connecting respectively the measuring devices
Gs and Gp to the input and output of the
system, the first measurement is carried out
under a suitable input excitation, Xi(s) and the
input and output signals, Ui(9) and Yi(s), are
stored by the corresponding recorders.

As an input and output relationship, we
have

Ui(s) G,(s)

...(13)

Equation (13) implies a rigorous measurement
equation in conventional identification
processes. From Eq.(13), it is obvious that if
we use the observed signals, Ui(s) and Yi(9), to
identify the dynamics of the system 7, the
identified result includes the measuring device
dynamics Ga(9) and Gis) besides the system
dynamics 7(s). That is to say, the order and
parameter values of the mathematical model
identified with the conventional method
depend on the dynamical characteristics of the
measuring devices used for signal observation
to some extent.
2) Second measurement:

This measurement is correspond to the
second measurement of the improved double

measuring. So, we get the following
relationship;
5(s) _Gu(9) ..(14)

U,(s) Gy(s)

Accordingly, we can easily get the desired
transfer characteristic 7(s) by solving a pair of
Eqgs. (13) and (14) as follows:

T(s) = B
U,()Y,(s)

Equation (15) implies that we can obtain 7(s)
without any influence of measuring dynamics

...(15)
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Gi9 and Gis. This also suggests us a
potential application of the improved double

measuring method to linear system
identification problems.
nif)
200 . T |- G, ﬂo——- win)
c, P4 '.? “lt
o (1)

Fig. 6(a) Measurement 1
wit)

.|
) + 2

»it) ‘l: G, O yAt)
G, —’-E,—:»O—o wif)

i)
Fig. 6(b) Measurement 2

5. Measurement Noise Influence on the
Identification

The identification procedure due to the
improved double measuring method succeeds
under the noise free condition. However, in
the case when the measurement noise n{# and
v{9(=1,2) cannot be ignored in Fig. 5, only the
signals u{®, y{? are affected by the noise are
observed, where it is assumed that the noise
n{d, y{d (=1,2) are stationary time series
with zero mean and they are uncorrelated to
each other. If the signals u{# and y(9 (=1,2)
are used in stead of p{?) and z(#), respectively,
for the identification due to the improved
double measuring method, then the result

T(S) - K(S)Uz(s)
U, ()Y, (s)
_Z()+H() P+ N,()

= , ...(16)
F(s)+Ny(s) Z,(s)+V,(s)

is not expected to coincide with 7(s).

Since the noise n{d and vi{d (=1,2) are
uncorrelated to each other, the Fourier
transformation of the cross-covariance for each
of the signals and u{? in measurement
1(#1,2) yields

8,1 (@) = 8,1(0), 8,1 (@) = S, (@) + S (@) 5 ---(1T)

(=1,2)

where Syiua) is the cross power spectral
density with yi and uiand Suiud@) is the power
spectral density of u. On the other hand, the
cross spectral densities, the spectral densities
and the frequency transfer functions satisfy

Szlpl(w) — Ga(ja))T(jw)

S pip1 (@) G,(jo) ..(18)
S.252(®@) _ G,(jo) :
szpz(a’) G,(jo)

From Eqs.(16) and (17), the system 7 is
expressed by the cross spectral and spectral
densities:

Szl pl (w)S p2p2 ((0)

Splpl(w)San(a))

T(jo)=

— Sylul (a’) . Su2u2(a)) . 1+ {Splpl(w)/snlnl (m)}_] yee '(19)
Sulul (w) Sy2u2 (0)) 1+ {Sprz (w)/sn2n2(w) B

where Spip@)/Snin{@ denotes the signal-to
noise (SN) ratio at the observed output from
the device Gb. Therefore, the system 7'can be
identified from the observable signals u;, yiand
SN ratios. That is, the measurement noise
influence on the identified result appears in
the last multiplied term;

1+{S,11 (w)/S,,,,,, (@)} .
1+{S p2p2 ((0)/ So2m2 (‘0)}-1

Since the SN ratios Spipd@)/Snind@ (7 =1,2)
are determined by the output channel of the
device Gp, they are approximately regarded as
equivalent. That is, the system 7 can be
approximately be expressed by

~ S}'lul (w) . Su2u2(w) .
- Sy (@) SyZuZ(w)

Moreover, Syiufa)/Suiu@ in Eq.(20) is
considered as the frequency transfer function
of the system whose input is w and whose
output is yi Thus, the system 7 is

T ...(20)

approximately equal to 7' of Eq.(16), which is
identified result by the improved double



On Dynamic Multiple Measuring Methods 141

measuring method. This means that the
noise influence on the result identified by the
improved double measuring method can be
removed by the principle of the method that
two measurements 1 and 2 are required for the
same measurement devices.

Remarks 31 In measurements 1 and 2, the
input signals x1(9), x() are not necessarily the
same. Especially, when these signals x1(9),
x2(?) are generated from the same stochastic
source or the statistical properties of these
signals are the same, SN ratios
Soip1(a)/ Smm(@), and Spep2(@)/Sem(@) coincide
with each other and the equality of Eq.(19)
holds. This means that the noise influence
can be completely removed.

6. Feasibility Studies Through Simulation
In order to the validity of the improved
double measuring method, we have considered
a few numerical examples [3],[5]. The
examples show for discrete time systems since
the above discussion is also valid for diacrete
time systems though the previous sections
dealt with continuous time systems.
Referring to Fig. 5, we set up a discrete-time
simulation model as follows:
_0314330+0.012327z -0.302003z7  (99)

@ 1-1.913713z" 2
1. 21 +0.9383672
and
0.909091 + 0.909091 z™!
G,(z)= -
1-0.818182 z @2)
1.7+1.7z7
G.(z) =
+(2) = 170666667 2

where T(2), G«2 and Gi2) are pulse transfer
functions of 7, Ga and Gb, respectively.

Substituting z = exp(w7% into the above
equations, we can calculate the frequency
responses of Gs, G» and 7, where jis imaginary
unit, @ is angular frequency and 7sis the
sampling period (0.02 s). The results are
shown in Figs. 7 and 8.

The first and second measurements are
conducted respectively under the input
excitations of white Gaussian noise sequences
with mean 0 and variance 1. The set of

output signals, {31(), wm(d} and {0, w(}

(= 0,1,...,399), was used to calculate (1) and
(). That is to say,

399
@)= 1(.)* 2(i)= y](k) 2(i_k)
YO=nEr g ’ ...(23)

u(i) = u (i) * y, (i) = Y u, (k) y, (i — k)
k=0

(=0,1,....,798).

Based on the observed data y»1(2) and w(2
of the first measurement and the calculated
data () and u(), the parameters of pulse
transfer function Eq.(24) were determined
with least square method [6].

by+bz " +b,z 2 4eeeee +b,z”™"

0T Y9 2 n (24)

= s e
l+az 42,272 40000 +a,z”™"

T

where the order n was determined with
Akaike’s Information Criterion (AIC)[7].

The frequency responses based on the
simulated results are shown in Fig. 8. Fig. 8
indicates that the simulated results with the
conventional method is influenced by G«(2) and
Gi(2), but that the influence is eliminated by
the improved method.

The measurement noise influence on the
identified is also examined by simulation.
Referring to Fig. 6, we set up input signals
xi(d, x(d are generated as white Gaussian
time series with mean 0 and variance 1, and
measurement noise n{f and v (=1,2) are
generated as white Gaussian time series with
mean 0 and variances 0.03 and 0.01,
respectively.

For these systems, numerical simulation of
measurements 1 and 2 are achieved and the
system 7T is identified. That 1is, in
measurement 7 (=1,2), the frequency response
function Syiu{@)/Suiu{a) is identified as an ARX
model whose input and output are u; and y;
respectively. The identified results are
substituted for Eq.(20), and that yields the
model identified by the improved double
measuring method.
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Fig. 7 Frequency responses of G» and G
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a: the object to be identified
b: identified by the conventional method
c: identified by the novel method

Fig. 8 Frequency responses of T'with
identified results

Gain [dB]

20 40 60 80 100

Fig. 9 Frequency responses

The frequency response of the identified
model is plotted in Fig. 9 as the solid line.
The dashed line indicate that of the true
system 7, and the dotted line indicates that of
the model identified by the conventional
method. Here, the conventional method means
the identification method by which the
influence of the measuring devices is ignored.
That is, the model identified only by using
data w1 and y1 of measurement 1 is regarded as
the model identified by the conventional
method. Since the data affected by the
measuring devices G and G as well as noise
n{fand z(d, the identified result by the
conventional method also includes the
difference in dynamics between these devices
and the influence of noise. This fact can be
seen in Fig. 9, where the dotted line is apart
from the others. While Fig. 8 shows that the
response of the model identified by the
improved double measuring method is close to
the true one. This implies that the
identification method by the double measuring
method removes the influence of the difference
in dynamics between two measuring devices as
well as the measurement noise. Therefore,
the improved double measuring is useful even
if there exists measurement noise.

7. Conclusion

The relative compensation of differences in
dynamics among plural measuring devices is
significant for precise measurement. The
dynamic multiple measuring method has been
developed and applied for the relative
compensation by the author and his research
group [1]~[5].

In this tutorial paper, the author has
described the basic concept of the dynamic
multiple measuring method, the extended
version of the Gauss’ double weighing method,
and has presented the analytical result on the
measurement noise influence and a few results
of numerical feasibility studies are given to
suggest the potential application of this
method to practical systems. Here, the
analysis is paid to only the case when the
improved double measuring method is applied
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to the system identification problem, but the
similar discussion is available for application
of the double measuring method or the
improved double measuring method to
calibration problems and control problems.
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