レイリーフェージングチャネルにおける多値 QAM のビット誤り率

小西 憲一

岡山理科大学工学部情報工学科 (2006年9月27日受付、2006年11月6日受理)

1. まえがき

普及が著しい最近の3G携帯電話でもわかるように、 ワイヤレスディジタルモバイルシステムはかつての音 声主体の通信からマルチメディア通信へとその中心的 機能は移りつつある.限られた周波数資源においてそ のような機能を十分に発揮するためには更なる高速伝 送を可能にする、よりスペクトル利用効率の高いディ ジタル変調方式が要求される. 伝送帯域幅を増加せず に高いスペクトル利用効率を実現する変調方式として 最も魅力ある方式が多値 QAM(M-ary Quadrature Amplitude Modulation, 以下 M-QAM と記す)方式であ る. 通常, M-QAM 方式のビット誤り率 (BER) を閉 形式で正確に計算することは煩雑で困難なことが多く, 従来から種々の近似式の形式が提案されて用いられて きた. 多値数 M が 16 値や 64 値の場合の正確な BER の計算式は得られていたものの、任意の M の値に対す る正確な BER の計算式は知られていなかった. ようや く近年になって、情報ビット列の M-QAM シンボルへ のマッピングをグレイ符号配置にしたときの正確な BER が任意の M の値に対し計算できる閉形式の計算 式が見出された. 従来から知られていた多くの近似式 による M-QAM の BER では、SN 比の高い領域では正 確な値に近いが、SN 比の低い領域では正確さに欠け ることが多い.

この論文では、まず任意の*M*に対して正確な BER を与える計算式と代表的ないくつかの近似式をまとめ て記述し、AWGN チャネルにおいて SN 比の低い領域 での BER を計算して近似式の近似の度合いについて 検討する.次いで、モバイルマルチメディア通信を念 頭において、典型的な電波伝搬環境であるレイリーフ ェージングチャネルにおけるシングルチャネル受信の 場合とマルチチャネル受信の場合の M-QAM の厳密な BER の理論式を求め、いくつかの計算例を示す.特に、 文献に見当たらない多値数*M*が非常に大きい場合の BER の計算結果例は有用な基礎資料となると思われ る.また、実用的な平均 SN 比の範囲では近似式が有 用なことを示す. AWGN チャネルにおける M-QAM の BER について グレイ符号マッピング格子型信号点配置の M-QAM 信号空間ダイヤグラムの一例として, 64 値 QAM の場 合を図1に示す.

• 101111	0 101101	100101	• 100111	000111	• 000101	001101	001111
101110	101100	100100	• 100110	000110	000100	001100	001110
• 101010	• 101000	• 100000	100010	0 00010	•	• 001000	• 001010
101011	101001	100001	100011	000011	000001	001001	001011
•	•	•					
111011	111001	110001	110011	010011	010001	011001	011011
111011	111001	110001	110011 	010011	010001	011001 011000	011011 011010
111011 111010	111001 111000 111100	110001 110000 110100	110011 110010 110110	010011 010010 010110	010001 010000 010100	011001 011000 011100	011011 011010 011110

図 1. グレイ符号マッピング 64 値 QAM の信号空間ダイヤグラム

情報ビット列の M-QAM シンボルへのマッピングを グレイ符号とした場合の AWGN チャネルにおける M-QAMの BERの厳密式は D. Yoon と K. Cho らによっ て見出された[1], [2]. それは次式で与えられる.

$$P_{b,M} = \frac{1}{\log_2 \sqrt{M}} \sum_{k=1}^{\log_2 \sqrt{M}} \frac{1}{\sqrt{M}} \sum_{i=0}^{(1-2^{-k})\sqrt{M}-1} \left\{ (-1)^{\left\lfloor \frac{i\cdot 2^{k-1}}{\sqrt{M}} \right\rfloor} \right\}$$
$$\cdot \left(2^{k-1} - \left\lfloor \frac{i\cdot 2^{k-1}}{\sqrt{M}} + \frac{1}{2} \right\rfloor \right) \operatorname{erfc} \left((2 \cdot i + 1) \sqrt{\frac{3\log_2 M}{2(M-1)} \cdot \frac{E_b}{N_0}} \right) \right\}$$
(1)

上式において

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$
⁽²⁾

はガウスの誤差補関数である.また,*M*は多値数,*E*, は1ビット当りのエネルギー,*N*,2は相加白色ガウ ス雑音の両側電力スペクトル密度である. [x]はガウ スの記号でxの整数部を表す. ただし, M-QAMの*M* 個のシンボルはどれも等確率で送信されるという仮定 がおかれている.

式(1)の厳密式が見出されるまでは M-QAM の BER は近似式を使って評価されることが多かった. 高 SN 比の領域で比較的良好な BER を与える,これまでに知 られている M-QAMの BER の代表的な近似式をまとめ ると以下のようになる.

a) I. Korn[3], B. Sklar[4]の近似式

$$P_{b,M} \cong \frac{\sqrt{M} - 1}{\sqrt{M} \log_2 \sqrt{M}} \operatorname{erfc}\left(\sqrt{\frac{3 \log_2 M}{2(M-1)} \cdot \frac{E_b}{N_0}}\right)$$
(3)

b) J. Lu, K.B. Letaief, J.C.-I. Chuang, M.L. Liou の近似 式[5]

$$P_{b,M} \simeq \frac{\sqrt{M} - 1}{\sqrt{M} \log_2 \sqrt{M}} \sum_{i=1}^{\sqrt{M}/2} \operatorname{erfc}\left((2 \cdot i - 1) \sqrt{\frac{3 \log_2 M}{2(M-1)} \cdot \frac{E_b}{N_0}}\right)$$
(4)

c) L.-L. Yang, L. Hanzo の近似式[6]

$$P_{b,M} \cong \frac{\sqrt{M} - 1}{\sqrt{M} \log_2 \sqrt{M}} \operatorname{erfc}\left(\sqrt{\frac{3 \log_2 M}{2(M-1)} \cdot \frac{E_b}{N_0}}\right) + \frac{\sqrt{M} - 2}{\sqrt{M} \log_2 \sqrt{M}} \operatorname{erfc}\left(3\sqrt{\frac{3 \log_2 M}{2(M-1)} \cdot \frac{E_b}{N_0}}\right)$$
(5)

以上の式(1)及び式(3)から式(5)を1ビット当りの SN 比 E_b/N_o の低い領域で計算した結果の一例として、 256値QAMの場合のBERを図2に示す. 横軸の E_b/N_o を -10 dB から +10 dB に取っている. 図 2 からわかる ように, L.-L. Yang と L. Hanzo の近似式(5)が最も良好 な近似であると判断できる. また, I. Kom や B. Sklar の近似式(3)は全ての SN 比の領域で常に低い値が出て くる. J. Lu らの近似式(4)は E_b/N_o < -5dB の領域で $P_{b,M}$ が 1/2 を超えてそのような低 SN 比の領域ではこ の 近 似 式 は 使 え な い と 理 解 で き る . 図 に は E_b/N_o > 10dB の結果は示されていないが, そのよう な高 SN 比の領域ではどの近似式も良好な値を与える.

ロイリーフェージングチャネルにおける M-QAM の BER

3.1 シングルチャネル受信

D. Yoon と K. Cho らの M-QAM の BER の厳密式をも とにレイリーフェージングチャネルにおける BER を 求める.フェージングチャネルにおいては、上記で E_b/N_0 と書いていた SN 比は瞬時的な値でありこれは

図 2. 256 値 QAM の BER (厳密値と近似値)

ランダム変数であるから、それを $\gamma_b = E_b / N_0$ とおく. レイリーフェージングの場合、 γ_b の確率密度関数は次のような指数分布となる.

$$p(\gamma_b) = \frac{1}{\overline{\gamma}_b} \exp\left(-\frac{\gamma_b}{\overline{\gamma}_b}\right), \qquad \gamma_b \ge 0 \tag{6}$$

ここで、 \bar{p}_{o} は γ_{o} の平均値である.いま、フェージン グは十分に低速なフラットフェージングであるとし、 受信機においてフェージングチャネルの全パラメータ の完全な推定が可能で、任意の多値数の M-QAM に対 して同期検波が可能であるとする.そのような仮定の 下では、レイリーフェージングチャネルにおける M-QAM の平均 BER $\bar{P}_{o,M}$ は D. Yoon と K. Cho らの厳密 式を γ_{o} の関数として $P_{o,M}(\gamma_{o})$ とおいて、それを γ_{o} の確 率密度関数の式(6)で平均化して得られる.すなわち

$$\overline{P}_{b,\mathcal{M}(\text{Rayleigh})} = \int_{0}^{\infty} P_{b,\mathcal{M}}(\gamma_{b}) p(\gamma_{b}) d\gamma_{b}$$
(7)

である. 式(7)を計算した結果は

$$\overline{P}_{b,\mathcal{M}(\text{Rayleigh})} = \frac{1}{\log_2 \sqrt{M}} \sum_{k=1}^{\log_2 \sqrt{M}} \frac{1}{\sqrt{M}} \sum_{i=0}^{\binom{n-2^{-k}}{M}-1} \left\{ \left(-1\right)^{\lfloor \frac{i2^{k-1}}{\sqrt{M}} \rfloor} \right\}$$

$$\cdot \left(2^{k-1} - \left\lfloor \frac{i \cdot 2^{k-1}}{\sqrt{M}} + \frac{1}{2} \right\rfloor \right) \cdot \left(1 - \frac{1}{\sqrt{1 + \frac{1}{(2i+1)^2 \alpha \, \tilde{\gamma}_b}}}\right) \right\}$$
(8)

となる. ここで,

$$\alpha = \frac{3\log_2 M}{2(M-1)}$$
(9)

とおいている.

式(8)の計算結果の一例として, *M*=16, 64, 256, 1024, 4096の場合の平均 BER を図 3 に示す. 横軸は 1 ビット当りの平均 SN 比 *疗*。である.

チャネルにおける 1024 値 QAM の BER

また,図4は一例としてM=1024値のQAMのBER を AWGN チャネル (フェージングなし)の場合とレ イリーフェージングチャネルの場合を比較のために併 記したものである.平均BER $\overline{P}_{b,1024}$ =10⁻³において 14dB以上, $\overline{P}_{b,1024}$ =10⁻⁴においては22dB以上のSN比 劣化 (同一BER を与えるのに必要なシステムマージ ン)があるのでダイバーシチ受信,誤り訂正符号など なんらかのフェージング対策が必要である.

L.-L. Yang と L. Hanzo の近似式をもとに求めたレイ リーフェージングチャネルの場合の M-QAM の BER を厳密値と比較して表1に示す.

Ave.SNR	М	Exact BER	Approx. BER
	16	1.9757×10^{-1}	2.0339×10^{-1}
0 dB	64	2.4706×10^{-1}	2.5105×10^{-1}
	256	2.8903×10^{-1}	2.8412×10^{-1}
	1024	3.1955×10^{-1}	2.9394×10^{-1}
	4096	3.4119×10^{-1}	2.8317×10^{-1}
	16	4.2371×10 ⁻²	4.2991×10 ⁻²
	64	7.6680×10^{-2}	7.7158×10 ⁻²
10 dB	256	1.2423×10^{-1}	1.2379×10 ⁻¹
	1024	1.7402×10^{-1}	1.7054×10^{-1}
	4096	2.1784×10^{-1}	2.0589×10^{-1}
	16	4.8854×10^{-3}	4.9479×10^{-3}
	64	1.0620×10^{-2}	1.0668×10^{-2}
20 dB	256	2.4107×10^{-2}	2.4064×10^{-2}
	1024	5.1438×10 ⁻²	5.1082×10^{-2}
	4096	9.1965×10 ⁻²	9.0611×10 ⁻²
	16	4.9634×10^{-4}	5.0259×10^{-4}
30 dB	64	1.1078×10^{-3}	1.1127×10^{-3}
	256	2.7133×10^{-3}	2.7090×10^{-3}
	1024	7.0292×10^{-3}	6.9935×10^{-3}
	4096	1.8122×10^{-2}	1.7985×10^{-2}
	16	4.9713×10 ⁻⁵	5.0338×10 ⁻⁵
	64	1.1126×10 ⁻⁴	1.1175×10^{-4}
40 dB	256	2.7487×10^{-4}	2.7445×10^{-4}
	1024	7.3190×10 ⁻⁴	7.2833×10 ⁻⁴
	4096	2.0524×10^{-3}	2.0386×10^{-3}

表 1. 厳密値と Yang, Hanzo の近似式に基づく M-OAM の BER(レイリーフェージングチャネル)

Yang と Hanzo の近似式に基づいて求めた BER は、厳密値に比べて 64 値以下ではわずかに高めに、また 256 値以上ではわずかに低めに出ている. 相対誤差は平均 SN 比や多値数 M によりばらつきがあるが、多くの場合に相対誤差10⁻² 以下で実用的な SN 比の範囲(実用上は所要回線品質を満足する必要があるが、たとえば

平均 BER 10⁻² 以下を想定してそのような BER を与え るような SN 比の範囲という意味)においては十分に 良好なM-QAMのBER近似計算式として使うことがで きる.

3.2 マルチチャネル (ダイバーシチ) 受信

この節ではレイリーフェージングチャネルにおいて マルチチャネル(すなわちダイバーシチ)受信する場 合の M-QAM の BER を考える.ここでは合成後の受信 信号 SN 比が最大になる意味で最適なダイバーシチ合 成法である最大比合成(Maximal Ratio Combining, MRC)ダイバーシチ受信とする.いま,ダイバーシチ の各ブランチの受信信号は独立で同一統計に従うレイ リーフェージングを受けるものとする.MRC 合成後の トータルのビット当りの SN 比を γ_{b,1} と書くと, γ_{b,1} は 各ブランチの SN 比の和

$$\gamma_{b,l} = \sum_{l=1}^{L} \gamma_{b,l} \tag{10}$$

で与えられる.ここで、 $\gamma_{b,l}$ は各ブランチでの1ビッ ト当りの SN 比、Lはダイバーシチのブランチ数(チャネル数)である.各ブランチのフェージングが独立・ 同一統計のレイリーフェージングであるとき、 $\gamma_{b,l}$ の 確率密度関数は自由度 2Lの χ^2 (カイ2乗)分布となり、

$$p(\gamma_{b,t}) = \frac{\gamma_{b,t}^{L-1}}{(L-1)! \bar{\gamma}_b^L} \exp\left(-\frac{\gamma_{b,t}}{\bar{\gamma}_b}\right)$$
(11)

と書ける.式(11)においては $\bar{\gamma}_{b}$ はブランチ当りでの 1 ビット当りの平均 SN 比である.このとき,平均 BER は $\gamma_{b,t}$ の関数としての式(1)の M-QAM の BER $P_{b,M}(\gamma_{b,t})$ を式(11)で平均化して

$$P_{b,\mathcal{M}(\mathrm{MRC})} = \int_{0}^{\infty} P_{b,\mathcal{M}}(\gamma_{b,i}) p(\gamma_{b,i}) d\gamma_{b,i}$$
(12)

より計算される.式(12)は文献[7]の式(4-14-5)を参考に して計算すると閉形式で求めることができ,

$$\overline{P}_{b,\mathcal{M}(\mathsf{MRC})} = \frac{1}{\log_2 \sqrt{M}} \sum_{k=1}^{\log_2 \sqrt{M}} \frac{1}{\sqrt{M}} \sum_{l=0}^{(-2^{-k})\sqrt{M}-l} \left\{ (-1)^{l} \left[\frac{l+2^{k+1}}{\sqrt{M}} \right] \right\}$$
$$\cdot \left(2^{k-1} - \left\lfloor \frac{i \cdot 2^{k-1}}{\sqrt{M}} + \frac{1}{2} \right\rfloor \right) \cdot \frac{(1-\mu)^L}{2^{L-1}} \sum_{l=0}^{L-1} \binom{L-1+l}{l} \cdot \left(\frac{1+\mu}{2} \right)^l \right\}$$
(13)

$$\mu = \frac{1}{\sqrt{1 + \frac{1}{(2 \cdot i + 1)^2 \, \alpha \overline{\gamma}_b}}}, \quad i = 0, 1, 2, \cdots, (1 - 2^{-k}) \sqrt{M} - 1$$

$$k = 1, 2, \cdots, \log_2 \sqrt{M}$$
(14)

である.

M = 256, 1024, 4096 値に対して式(13)を計算した 結果の例を図 5, 6, 7に示す. 横軸は \bar{p}_{b} である. ダイ バーシチブランチ数はL=2, 4の場合を計算した. 図 中には比較のためにL=1, すなわちダイバーシチなし (シングルチャネル受信)の場合を併記している.

図 5. MRC ダイバーシチ受信の場合の BER (256 値 QAM)

.....

となる.ここで

ダイバーシチ受信することによって BER 特性が大き く改善されることがわかる. 平均 BER $\overline{P}_{b,M(MRC)} = 10^{-3}$ において,ダイバーシチなしに対して L = 2 の場合に 11dB から 12dB, L = 4 の場合に 17.5dB から 18dB のダ イバーシチ利得(同一 BER 与えるのに必要な平均 SN 比の低減量)が得られている.

4. むすび

典型的なモバイル伝搬環境であるレイリーフェージ ングチャネルにおいて, M-QAM の BER を AWGN チ ャネルにおける厳密式に基づいて計算した. BER はダ イバーシチを用いないシングルチャネル受信の場合と, MRC ダイバーシチ合成を用いるマルチチャネル受信 の場合について求めた. M = 1024 値や 4096 値のよう に非常に大きな多値数の場合の計算結果は文献に見当 たらないので,有用な基礎資料になると思われる.フ ェージングチャネルにおいては AWGN チャネルの場 合に比べて SN 比劣化が大きいが,ダイバーシチを用 いることで改善でき,平均 BER $\overline{P}_{b,M(MRC)} = 10^{-3}$ におい てブランチ数 2 の場合で 11dB から 12dB,ブランチ数 4 の場合で 18dB のダイバーシチ利得が得られること がわかった.また,これまで M-QAM の BER を計算す るときに用いられた 2,3 の代表的な近似計算式につい て検討し, D. Yoon と K. Cho らの近似式に基づけば実 用的な SN 比の範囲において良好な BER を与えること もわかった.

参考文献

- D. Yoon, K. Cho and J. Lee, "Bit Error Probability of M-ary Quadrature Amplitude Modulation," *Proc. IEEE Veh. Technol. Conf. (VTC 2000-Fall)* Boston, MA, vol. 5, September 2000, pp. 2422 – 2427.
- [2] K. Cho and D. Yoon, "On the General BER Expression of Oneand Two-Dimensional Amplitude Modulations," *IEEE Trans. Commun.*, vol. 50, pp. 1074 – 1080, July 2002.
- [3] I. Korn, Digital Communications: Van Nostrand Reinhold, 1985.
- [4] B. Sklar, Digital Communications: Prentice-Hall, 1988.
- [5] J. Lu, K. B. Letaief, J. C.-I. Chuang and M. L. Liou, "M-PSK and M-QAM BER Computation Using Signal-Space Concepts," *IEEE Trans. Commun.*, vol. 47, pp. 181 – 184, Feb. 1999.
- [6] L.-L. Yang and L. Hanzo, "Recursive Algorithm for the Error Probability Evaluation of M-QAM," *IEEE Commun. Lett.*, vol. 4, pp. 304 – 306, Oct. 2000.
- [7] J.G. Proakis, *Digital Communications*, 3rd ed.: McGraw-Hill, 1995.

Bit Error Rate Performance of M-ary QAM over Rayleigh Fading Channel

Ken-ichi KONISHI

Department of Information and Computer Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan (Received September 27, 2006; accepted November 6, 2006)

In this paper, we first briefly review the exact closed-form expression and a few approximate expressions of the bit error rate (BER) of coherent M-ary square-shaped quadrature amplitude modulation (QAM) constellations with Gray coded bit mapping over the additive white Gaussian noise (AWGN) channel. Then we derive the exact closed-form expressions of BER of M-QAM over Rayleigh fading channel based on the exact BER expression for the AWGN. We consider multi-channel (diversity) reception as well as single-channel reception. The maximal ratio combining (MRC) is employed for the multi-channel receiver, and assuming independent, identically distributed Rayleigh fading. Perfectly known channel state information is assumed in evaluating the BER performance over fading channels.

Keywords: bit error rate (BER) performance; M-ary QAM; Gray coding; Rayleigh fading channel; maximum ratio combining (MRC); diversity reception.