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Multiple Scattering in Solids based on Statistical Model
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Angular distribution caused by multiple scattering in the small-angle approximation has been calculated, according to
the theory derived by Sigmund and Winterbon. In this formula for the angular distribution, single-scattering cross section
of elastic collision based on classical mechanics introduced by Lindhard et al is used and we employed
Thomas-Fermi-Moliere potential in the cross section. Multiple scattering distributions have been calculated for various
combinations of projectiles and targets and compared with several experimental results.
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1. Introduction

The angular broadening of the beam takes place
after a well-collimated ion beam passes thorough a
foil. Significant deflections of trajectory of each
incident particle result mainly from multiple
nuclear collisions because electronic scattering
generally does not cause deflections. The
information of multiple scattering is one of main
issues in atomic and nuclear physics. For example,
in the region of beam foil spectroscopy, multiple
scattering is often an undesirable phenomenon. The
angular divergence and lateral spread of beam in a
target foil have to be considered in the construction
of an apparatus because of diminishing the
resolution of the experiment. From a theoretical
point of view, the screened ion-atom potential is
estimated by multiple scattering approach.

So far multiple scattering has been investigated
experimentally and theoretically. For many
combinations of projectiles and targets,
experimental multiple scattering data have been
obtained [1-8, 5] in the incident energy ranges from
14keV to 7.2MeV and for the combinations of
incident ions with atomic number Z; for 1<7Z; <18
and target atoms with atomic number Z2 for 6 <Z:
< 28. Some experiments [1-3] showed good

agreement with theory; however deviations were
obtained for the other experiments [5]. The
information on the above literature was introduced
by H. H. Andersen et al. [6]. Many authors have
presented multiple scattering theories [7-9, 12, 13]
and review articles have been given by Scott [10] in
1963 and Sigmund [11] in 2004. Using small angle
approximation, Moliere [7], Meyer [8] and Sigmund
and Winterbon (SW) [9] developed well known
analytical formulae. Meyer and SW made use of the
differential scattering cross section based on
Thomas-Fermi (T'F) model which was developed by
Lindhard et al. [14]. On the other hand, Goudsmit
and Saunderson [12] and Lewis [13] treated
theories without small angle approximation.

The present paper reports on theoretical studies
of multiple scattering based on SW [9]. In section 2,
an elastic scattering cross section and a multiple
scattering formula are described on the basis of
Lindhard et al. and SW, respectively. The
theoretical results of present approach are

compared with several experimental results in Sec.
3.

2. Theory
2.1 Differential elastic scattering cross section
In this section, we introduce a scattering cross
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section of binary collision to calculate the angular
distribution of multiple scattering. The differential
cross section of elastic collision do based on the
method derived by Lindhard et al. [14] is used in
this paper. Lindhard et al. obtained do by
classical mechanics and their calculation was based
on the interatomic potential of Thomas-Fermi
model
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where e is the elementary charge, r is the distance
between nuclei, a is a screening length and (/) is
the screening fimction. By considering the relationship
between small scattering angle 6 and the impact
parameter p by means of impulse approximation,
in the center of mass system (C.M.S.), they showed

the formula,
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Here b is the collision diameter in Rutherford
scattering and E is the kinetic energy of a particle
with the reduced mass. They, then, replaced in eq.

2 6 with 2sin(%) . The expansion was
performed on the grounds that the case of using
power law potential provided the correspondence

between analytical formulae of small angle and
wide angle. The cross section is finally written as

follows,
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Fig.1. The comparison of scattering functions
calculated by Lindhard et al [13] (open squares),
Meyer [8] (open triangles), SW [9] (open circles),
Mueller [14] (asterisks) with the present result (solid
line).

estimated numerically by using a Thomas-Fermi
(T'F) potential.

The function, (%) ,
interaction potential. Meyer(8],

is dependent upon
SWI9], and
Mueller[15] also evaluated f(#?). Meyer made use

of a T'F potential and SW used a three-parameter
form, which represents various interatomic
potentials. Mueller derived a fitting form, which
describes T'F-Moliere potential. In the present
treatment, T-F-Moliere potential is employed. The
comparison with them is shown in Fig. 1. The

function f(t%) in our case is expressed as
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In eq. (7), the values of parameters are a:= 0.10,
az2= 055 as=60, f1=60, fz2=120, f3=
0.30.

2.2 Multiple scattering

We consider the angular distribution of ions
penetrating a foil of thickness x. The formula of
multiple scattering is based on the theory of SW [9].

The angular distribution at x+Jx changes from

the distribution at x after the particles traveled

Sx in the matter. There are two phenomena that
some particles change its directions due to nuclear

collisions and the others without nuclear collision.

The distribution at x+6x , therefore, is the

following expression
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where @ and @ are the two dimensional angles
and » is the number of atoms per unit volume. Four
assumptions are used here. (I) neglect of energy loss,
(ID binary collision with azimuthally symmetrical
scattering, (ITT) small scattering angle in each event
of collision and (IV) random homogeneous
distribution of scattering centers in space. The
differential scattering cross section, therefore, is
considered as a function of the relative deflection

|5|=|c’2—[i’| because of azimuthal symmetry.
Considering the limit, & — 0, we get
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Here we define the two-dimensional Fourier
transformation as follows
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and then eq. (10) becomes the differential equation
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The solution of the above equation is

f@x, k)y=Cem4®x, a3)
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and using the initial condition, f(0,@)=4d(a), we
obtain

C=1(, k),
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In eq. (1), integrating azimuthal angle and using
do(f) = O()dQ = O(p) p dp dy , we find
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where J, is the zero-order Bessel function of the first
kind. Inserting eq. (13) in eq. (11), we get by the

same manner as A(k) is treated

f(x, a)= 1 . Tdic'e—nA(k)x eil?oa ,
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Using the differential scattering cross section

showed by Lindhard et al. and the small angle
approximation, we can rewrite eq. (17) as follows
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Here, E, is the energy of incident particle, 7 is
the reduced thickness, a is the total scattering
angle, a is the reduced scattering angle and z is
the non-dimensional variable. We note that the
formula of the scattering distribution in reduced
scattering angle is independent of the energy of
projectiles.

There are various screening lengths, a,, a,,

a, and a,, , proposed by Bohr [16], Firsov [17],

Lindhard et al. [14] and Ziegler et al. [18],
respectively, of the following forms:
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We adopt @, in the present study.

3. Results and Discussions

In this section, the results of eq. (18) are
compared with several experimental results. All the
measured and theoretical distributions are
normalized to the maximum value. The scattering
distribution is obtained as a function of the reduced
thickness and reduced angle. The reduced thickness
includes the screening length a, which has been
calculated according to Lindhard et al. [14]. In the
reduced units, the results of calculations are
independent of the incident energy of particles, but
depend upon the reduced thickness. Hence, for
different combinations of Zi, Z2, and incident energy
E,, the same angular distributions are obtained in
case of the same reduced thickness.

Intensity (normalized)

Scattering angle (degree)
Fig. 2. Scattering distribution of 50keV
proton transmitted through a 20pug/m?
nickelfoil. ~ The open circles and solid line
refer to the experimental results obtained by
Schaffler [1, 4] and the present result,
respectively. The vertical and the horizontal
axes are the normalized intensity and the
scattering angle in degree, respectively.
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In Fig2, 3 and 4, the measured scattering
distributions of 50keV proton[l], 54keV argon[2]
and 7.2MeV neon[3] passing through nickel,
aluminum and carbon foils with the thickness
20pg/cm?, 2.5pg/em? and 12pglem?, respectively, are
shown by open circles. Also the corresponding
theoretical results are shown by solid lines. We have
taken out measured values for the above three
experiments from the literature written by Moller
et al. [4]. The reader, therefore, is recommended to
see the original reports [1-3]. In the above three
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Fig. 3.  Scattering distribution of 54keV

argon transmitted through a 25pg/m?
carbonfoil.  Open circles and solid line
refer to the experimental results obtained by
Hogberg [2, 4] and the present result,
respectively. The vertical and the horizontal
axes are the normalized intensity and the
scattering angle in degree, respectively.

experiments, we can say that the theoretical curves

explain very well the trend of the experimental data.

In Fig.2, we have not employed the screening length
a of two atoms but single atom, because proton has
no bound electron. Namely, for the combination of
proton and nickel, the screening length g has been
calculated in the condition that Z; is zero.

For Li incidence on AL Co and Si targets [5], is
found disagreement, while for the combination of Li
and C, the experimental and theoretical results are
in agreement as shown in Fig. 5 and 6. As pointed
out in the previous section, in reduced scattering
angle, the angular distribution is independent of the
energy of the incident particles but dependent upon

Intensity (normalized)

0.0 0.2 0.4 0.6

Scattering angle (degree)

Fig. 4  Scattering distribution of 7.2MeV
neon transmitted through a 12pglem?
aluminum foil. Open circles and solid line
refer to the experimental results obtained by
Spahn [3, 4] and the present result,
respectively. The vertical and the horizontal
axes are the normalized intensity and the
scattering angle in degree, respectively.
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Fig. 5. Scattering distribution of lithium
transmitted through a 170 A aluminum foil
and 155A carbon foil Open circles and
open squares refer to the experimental results
on Al and C, respectively, obtained by Schwabe
et al [5]. The solid line and dashed line denote
the present results for Al and C, respectively.
The vertical and the horizontal axes are the
normalized intensity and the reduced scattering
angle, respectively. The incident energies are 14,
20, 28, 35, 43 and 50keV.

the reduced thickness. The results measured at
different energies in Fig. 5 and 6 lay on the unique
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curves, respectively. The foil thicknesses of AL, C, Co
and Si are 170, 155, 210 and 700[Al, respectively. In
Fig5 and 6, the measured data for different
energies are intermingled, and therefore we
recommend the reader to refer to the original
papers [5] for detailed experimental results.
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Fig. 6. Scattering distribution of lithium
transmitted through a 210A cobalt foil and
700 A silicon foil. Open circles and open
squares correspond to the experimental
results on Co and Si, respectively, obtained
by Schwabe et al. [5]. The solid line and
dashed line denote the present results for
Co and Si, respectively. The vertical and the
horizontal axes are the normalized intensity
and the reduced scattering angle,
respectively. The incident energies are 28,
35, 43 and 50keV.

Schwave et al. [5] fitted the theoretical
distributions of Meyer’s theory to the experimental

ones by changing screening length a for
combinations of Z; and Z:. From the above

comparisons and the suggestion of Schwabe et al.
[5], it is inferred that more realistic inter-atomic
potential could provide a better correspondence
between theory and experiment. Finally we add a
few comments that SW’s treatment dropped off the

function f,(z, &@) appeared in Meyer’s [8]. This is
valid, judging from the normalization of the

distribution function. H. H. Andersen et al. [6]
suggested that the experimental results showed
narrower distributions than theoretical ones in case
of the target film including grains huger than or
approximately equal to 100[ A].

4. Conclusion

The theoretical results in this paper are
agreement with the published experimental data
when the following combinations of projectiles and
targets are used: p—Ni, Ne-Al, Ar—C and Li-C. On
the other hand, there are discrepancies between the
calculated data and experimental ones for
combination of Li—Al, Li—Co and Li—Si.

We can say that it is useful to apply T-F-Moliere
potential to the multiple scattering theory of SW
and agreement between experimental and
theoretical results is obtained while for some
combinations of Z1 and Z: the differences between
them are shown.
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