A note on a condition for the obstruction ideal of an element α to be equal to the obstruction ideal of a linear fractional transform of α

KEN-ICHI YOSHIDA AND KIYOSHI BABA*

Department of Applied Mathematics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, JAPAN and *Department of Mathematics, Faculty of Education and Welfare Science, Oita University, Oita 870-1192, JAPAN

(Received June 2, 2006; accepted November 6, 2006)

Abstract

Let α be an algebraic element over the quotient field of an integral domain R. Let β be a linear fractional transform of α , that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b, c, d \in R, \ a\alpha - b \neq 0).$$

We give a condition that two obstruction ideals $J_{[\alpha]}$ and $J_{[\beta]}$ are the same under the assumption (a, b, c, d)R = R.

Keywords: obstruction ideal of flatness; linear fractional transform; generalized fractional ideal.

Let R be an integral domain with quotient field K and R[X] a polynomial ring over R in an indeterminate X. Let α be an element of an algebraic field extension of K and $\pi : R[X] \longrightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X) = \alpha$. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with deg $\varphi_{\alpha}(X) = t$, and write:

$$\varphi_{\alpha}(X) = X^t + \eta_1 X^{t-1} + \cdots + \eta_t, \, (\eta_1, \ldots, \eta_t \in K).$$

We define the generalized fractional ideal of α : $I_{[\alpha]} = \bigcap_{i=1}^{t} I_{\eta_i}$ where $I_{\eta_i} = (R :_R \eta_i) = \{c \in R; c\eta_i \in R\}$. We define the obstruction ideal of flatness: $J_{[\alpha]} = I_{[\alpha]}(1, \eta_1, \ldots, \eta_t)$ where $(1, \eta_1, \ldots, \eta_t)$ is the *R*-module generated by $1, \eta_1, \ldots, \eta_t$.

Let β be a linear fractional transform of α , that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b, c, d \in R, \ a\alpha - b \neq 0).$$

We denote by R^* the set of units of R and set $\Delta_{\beta} = ad - bc$.

Set $\varphi_{\alpha}(X,Y) = X^t \varphi_{\alpha}(Y/X)$. If Δ_{β} is in \mathbb{R}^* , then it is easily verified that

$$\varphi_{\beta}(X) = \varphi_{\alpha}(a,b)^{-1}\varphi_{\alpha}(aX-c,bX-d).$$

Set $\varphi_{\alpha}(X,Y) = X^t \varphi_{\alpha}(Y/X)$. If Δ_{β} is in R^* , then it is easily verified that

$$\varphi_{\beta}(X) = \varphi_{\alpha}(a,b)^{-1}\varphi_{\alpha}(aX-c,bX-d).$$

Our notation is standard and our general reference for unexplained terms is [3].

Let \mathfrak{p} be an element of SpecR and α an algebraic element of degree t over the quotient field of R. Set

$$\varphi_{\alpha}(X) = X^t + \eta_1 X^{t-1} + \dots + \eta_t, \, (\eta_1, \dots, \eta_t \in K)$$

and $(R_{\mathfrak{p}}:_{R_{\mathfrak{p}}}\eta_{i}) = \{c \in R_{\mathfrak{p}}; c\eta_{i} \in R_{\mathfrak{p}}\}$. Set $I_{R_{\mathfrak{p}},[\alpha]} = \bigcap_{i=1}^{t} (R_{\mathfrak{p}}:_{R_{\mathfrak{p}}}\eta_{i})$ and $J_{R_{\mathfrak{p}},[\alpha]} = I_{R_{\mathfrak{p}},[\alpha]}(1,\eta_{1},\ldots,\eta_{t})_{R_{\mathfrak{p}}}$ where $(1,\eta_{1},\ldots,\eta_{t})_{R_{\mathfrak{p}}}$ is the $R_{\mathfrak{p}}$ -module generated by $1,\eta_{1},\ldots,\eta_{t}$.

Lemma 1. (cf.[1, Lemma 1.1]) Let R be an integral domain and α an algebraic element over the quotient field of R. Let \mathfrak{p} be an element of SpecR. Then $I_{R_{\mathfrak{p}},[\alpha]} = I_{[\alpha]}R_{\mathfrak{p}}$ and $J_{R_{\mathfrak{p}},[\alpha]} = J_{[\alpha]}R_{\mathfrak{p}}$.

Lemma 2. ([2, Theorem 19]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α , that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b.c, d \in R, \ a\alpha - b \neq 0)$$

with $\Delta_{\beta} = ad - bc \neq 0$. Assume that the following conditions hold:

a is a unit of R.
 Δ_β + φ_α(a, b)I_[α] = R.
 Then J_[α] = J_[β].

Lemma 3. ([2, Theorem 22]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α , that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b.c, d \in R, \ a\alpha - b \neq 0)$$

with $\Delta_{\beta} = ad - bc \neq 0$. Assume that the following conditions hold:

b is a unit of R.
 Δ_β + φ_α(-a, -b)I_[α] = R.
 Then J_[α] = J_[β].

Lemma 4. ([2, Theorem 22]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α , that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b.c, d \in R, \ a\alpha - b \neq 0)$$

with $\Delta_{\beta} = ad - bc \neq 0$. Assume that the following conditions hold:

(1) c is a unit of R. (2) $\Delta_{\beta} + \varphi_{\alpha}(c, d)I_{[\alpha]} = R.$ Then $J_{[\alpha]} = J_{[\beta]}.$

Lemma 5. ([2, Theorem 26]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α , that is,

A note on a condition for the obstruction ideal of an element α to be equal to the obstruction ideal of a linear fractional transform of $\alpha = 3$

$$\beta = rac{clpha - d}{alpha - b} \quad (a, b.c, d \in R, \ alpha - b
eq 0)$$

with $\Delta_{\beta} = ad - bc \neq 0$. Assume that the following conditions hold: (1) d is a unit of R. (2) $\Delta_{\beta} + \varphi_{\alpha}(-c, -d)I_{[\alpha]} = R.$ Then $J_{[\alpha]} = J_{[\beta]}$.

Since

$$\varphi_{\alpha}(X,Y) = Y^t + \eta_1 X Y^{t-1} + \dots + \eta_{t-1} X^{t-1} Y + \eta_t X^t$$

we have $\varphi_{\alpha}(-a, -b) = (-1)^t \varphi_{\alpha}(a, b)$ and $\varphi_{\alpha}(-c, -d) = (-1)^t \varphi_{\alpha}(c, d)$. Hence $\varphi_{\alpha}(-a, -b)I_{[\alpha]} = \varphi_{\alpha}(a, b)I_{[\alpha]}$ and $\varphi_{\alpha}(-c, -d)I_{[\alpha]} = \varphi_{\alpha}(c, d)I_{[\alpha]}$.

Theorem 6. Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α , that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b.c, d \in R, \ a\alpha - b \neq 0)$$

with $\Delta_{\beta} = ad - bc \neq 0$. Assume that the following three conditions hold:

(1) (a, b, c, d)R = R.(2) $\Delta_{\beta} + \varphi_{\alpha}(a, b)I_{[\alpha]} = R.$ (3) $\Delta_{\beta} + \varphi_{\alpha}(c, d)I_{[\alpha]} = R.$ Then $J_{[\alpha]} = J_{[\beta]}.$

Proof. Let \mathfrak{p} be an arbitrary element of Spec*R*. By the condition (1), we see that $\mathfrak{p} \not\ni a$, $\mathfrak{p} \not\ni b$, $\mathfrak{p} \not\ni c$ or $\mathfrak{p} \not\ni d$. If $\mathfrak{p} \not\ni a$ or $\mathfrak{p} \not\ni b$, then, by Lemmas 2, 3 and condition (2), we have $J_{[\alpha]}R_{\mathfrak{p}} = J_{R_{\mathfrak{p}},[\alpha]} = J_{R_{\mathfrak{p}},[\beta]} = J_{[\beta]}R_{\mathfrak{p}}$. If $\mathfrak{p} \not\ni c$ or $\mathfrak{p} \not\ni d$, then, by Lemmas 4, 5 and condition (3), we have $J_{[\alpha]}R_{\mathfrak{p}} = J_{R_{\mathfrak{p}},[\alpha]} = J_{R_{\mathfrak{p}},[\beta]} = J_{[\beta]}R_{\mathfrak{p}}$. Therefore $J_{[\alpha]} = J_{[\beta]}$. Q.E.D.

Assume that (a, b, c, d)R = R. Then the converse of Theorem 6 does not hold, that is, even if $J_{[\alpha]} = J_{[\beta]}$, the conditions $\Delta_{\beta} + \varphi_{\alpha}(a, b)I_{[\alpha]} = R$ and $\Delta_{\beta} + \varphi_{\alpha}(c, d)I_{[\alpha]} = R$ don't hold in general:

Example 7. Let Z be the ring of all integers. Set R = Z, $\alpha = \sqrt{2}$, a = 1, b = 0, c = 0, d = -2 and $\beta = 2/\sqrt{2} (=\sqrt{2} = \alpha)$. Then the following five assertions hold:

(1)
$$\Delta_{\beta}R = 2\mathbf{Z}.$$

(2) $I_{[\alpha]} = I_{[\beta]} = R.$
(3) $J_{[\alpha]} = J_{[\beta]} = R.$
(4) $\Delta_{\beta} + \varphi_{\alpha}(a, b)I_{[\alpha]} = 2\mathbf{Z} \neq R.$
(5) $\Delta_{\beta} + \varphi_{\alpha}(c, d)I_{[\alpha]} = 2\mathbf{Z} \neq R.$

Proof. (1) It is clear from $\Delta_{\beta} = ad - bc = -2$. The assertion (2) is obvious from $\varphi_{\alpha}(X) = \varphi_{\beta}(X) = X^2 - 2$. (3) Since $I_{[\alpha]} \subset J_{[\alpha]}$ and $I_{[\beta]} \subset J_{[\beta]}$, we see that $J_{[\alpha]} = J_{[\beta]} = R$ by the assertion (2). (4) and (5) We obtain $\varphi_{\alpha}(X,Y) = Y^2 - 2X^2$. Hence $\varphi_{\alpha}(a,b) = \varphi_{\alpha}(1,0) = -2$ and $\varphi_{\alpha}(c,d) = \varphi_{\alpha}(0,-2) = 4$. Therefore $\Delta_{\beta} + \varphi_{\alpha}(a,b)I_{[\alpha]} = (-2,-2)\mathbf{Z} = 2\mathbf{Z} \neq R$ and $\Delta_{\beta} + \varphi_{\alpha}(c,d)I_{[\alpha]} = (-2,4)\mathbf{Z} = 2\mathbf{Z} \neq R$. Q.E.D.

In [2, Proposition 17], we have proved that $J_{[\alpha]} = J_{[a\alpha]}$ if $aR + I_{[\alpha]} = R$. So it would be natural to pose the following question: Assume that the following conditions hold.

- (1) (a, b, c, d)R = R.
- (2) $\Delta_{\beta} + I_{[\alpha]} = R.$

Then does the equality $J_{[\alpha]} = J_{[\beta]}$ hold? Unfortunately the answer is negative as the following example shows:

Example 8. Let R = k[X, Y] be a polynomial ring over a field k in two indeterminates X, Y. Set $\alpha = Y/(X-1)$ and $\beta = (Y\alpha+1)/X\alpha$. Then the following assertions hold:

(1) (a, b, c, d)R = R.(2) $\Delta_{\beta} = -X.$ (3) $I_{[\alpha]} = (X - 1)R.$ (4) $\Delta_{\beta} + I_{[\alpha]} = R.$ (5) $J_{[\alpha]} = (X - 1, Y)R.$ (6) $I_{[\beta]} = XYR.$ (7) $J_{[\beta]} = (XY, Y^2 + X - 1)R.$ (8) $J_{[\alpha]} \neq J_{[\beta]}.$

Proof. (1) and (2) are clear from a = X, b = 0, c = Y and d = -1. (3) Since $\varphi_{\alpha}(X) = X - \alpha$, we have $I_{[\alpha]} = \{c \in R; c\alpha \in R\}$. Hence $I_{[\alpha]} = (X - 1)R$. (4) By the assumptions (2) and (3), we know that $\Delta_{\beta} + I_{[\alpha]} = (-X, X - 1)R = R$. (5) $J_{[\alpha]} = I_{[\alpha]}(1, \eta_1) = (X - 1, -(X - 1)Y/(X - 1)) = (X - 1, Y)R$. (6) Since $\beta = (Y^2 + X - 1)/XY$, we have $I_{[\beta]} = XYR$. (7) $J_{[\beta]} = I_{[\beta]}(1, -(Y^2 + X - 1)/XY) = (XY, Y^2 + X - 1)R$. (8) We will prove that $X - 1 \notin J_{[\beta]}$. Assume the contrary, that is, $X - 1 \in J_{[\beta]} = (XY, Y^2 + X - 1)R$. Then there exist elements f(X, Y) and g(X, Y) of R such that

$$X - 1 = XYf(X, Y) + (Y^{2} + X - 1)g(X, Y).$$

Substituting X by 0 in the equation above, we have $-1 = (Y^2 - 1)g(0, Y)$. This is the contradiction. Hence $X - 1 \notin J_{[\beta]}$. On the other hand $X - 1 \in J_{[\alpha]}$. Therefore $J_{[\alpha]} \neq J_{[\beta]}$. Q.E.D.

Finally we prove a relation between $J_{[\alpha]}$ and $J_{[\beta]}$. By the proof of [2, Lemma 1], we have the following:

Lemma 9. Let R be an integral domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α , that is,

$$\beta = \frac{c\alpha - d}{a\alpha - b} \quad (a, b.c, d \in R, \ a\alpha - b \neq 0)$$

and set $\Delta_{\beta} = ad - bc$. If $\Delta_{\beta} \neq 0$, then

$$\Delta^t_eta I_{[eta]} \subset arphi_lpha(a,b) I_{[eta]} \subset I_{[eta]}$$

A note on a condition for the obstruction ideal of an element α to be equal to the obstruction ideal of a linear fractional transform of α 5

where deg $\varphi_{\alpha}(X) = t$.

Remark 10. The inclusion $I_{[\beta]} \subset \varphi_{\alpha}(a, b) I_{[\alpha]}$ does not hold in general as Example 7 shows.

Proposition 11. Let R be an integral domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α , that is,

$$\beta = rac{clpha - d}{alpha - b} \quad (a, b.c, d \in R, \ alpha - b
eq 0)$$

and set $\Delta_{\beta} = ad - bc$. If $\Delta_{\beta} \neq 0$, then $\Delta_{\beta}^{t} J_{[\beta]} \subset J_{[\alpha]}$.

Proof. Let K be the quotient field of R. Set

$$\varphi_{\alpha}(X) = X^t + \eta_1 X^{t-1} + \dots + \eta_t, \, (\eta_1, \dots, \eta_t \in K)$$

and

$$\varphi_{\beta}(X) = X^t + \lambda_1 X^{t-1} + \cdots + \lambda_t, (\lambda_1, \ldots, \lambda_t \in K).$$

By the equality

$$\varphi_{\beta}(X) = \varphi_{\alpha}(a,b)^{-1}\varphi_{\alpha}(aX-c,bX-d)$$

we obtain $\varphi_{\alpha}(a,b)\lambda_i \in (1,\eta_1,\ldots,\eta_t)$. Furthermore, $\varphi_{\alpha}(a,b) \in (1,\eta_1,\ldots,\eta_t)$. Therefore

$$\varphi_{\alpha}(a,b)(1,\lambda_1,\ldots,\lambda_t) \subset (1,\eta_1,\ldots,\eta_t).$$

By Lemma 9, we have $\Delta_{\beta}^{t}I_{[\beta]} \subset \varphi_{\alpha}(a,b)I_{[\alpha]}$. Hence

$$\Delta^t_\beta J_{[\beta]} = \Delta^t_\beta I_{[\beta]}(1,\lambda_1,\ldots,\lambda_t) \subset \varphi_{\boldsymbol{\alpha}}(a,b) I_{[\boldsymbol{\alpha}]}(1,\lambda_1,\ldots,\lambda_t) \subset I_{[\boldsymbol{\alpha}]}(1,\eta_1,\ldots,\eta_t) = J_{[\boldsymbol{\alpha}]}.$$

Q.E.D.

This shows that $\Delta_{\beta}^{t} J_{[\beta]} \subset J_{[\alpha]}$.

References

^[1] K. Baba and K. Yoshida: Anti-integral extension R[X]/R and invertibility of $\alpha^n - a$, Tamkang J. Math., **35**(1) (2004), 1-12

^[2] K. Baba and K. Yoshida: The relation between obstruction ideals of flatness with respect to an anti-integral element α and a linear fractional transform of α , submitted to Comm. Alg.

^[3] H. Matsumura: Commutative algebra (2nd ed.), Benjamin, New York, 1980.