A note on a condition for the obstruction ideal of an element α to be equal to the obstruction ideal of a linear fractional transform of α

Ken-ichi YOSHIDA and Kryoshi BABA*
Department of Applied Mathematics,
Okayama University of Science,
1-1 Ridai-cho, Okayama 700-0005, JAPAN and
*Department of Mathematics, Faculty of Education and Welfare Science, Oita University, Oita 870-1192, JAPAN

(Received June 2, 2006; accepted November 6, 2006)

Abstract

Let α be an algebraic element over the quotient field of an integral domain R. Let β be a linear fractional transform of α, that is, $$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b, c, d \in R, a \alpha-b \neq 0)
$$

We give a condition that two obstruction ideals $J_{[\alpha]}$ and $J_{[\beta]}$ are the same under the assumption $(a, b, c, d) R=R$.

Keywords: obstruction ideal of flatness; linear fractional transform; generalized fractional ideal.

Let R be an integral domain with quotient field K and $R[X]$ a polynomial ring over R in an indeterminate X. Let α be an element of an algebraic field extension of K and $\pi: R[X] \longrightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X)=\alpha$. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with $\operatorname{deg} \varphi_{\alpha}(X)=t$, and write:

$$
\varphi_{\alpha}(X)=X^{t}+\eta_{1} X^{t-1}+\cdots+\eta_{t},\left(\eta_{1}, \ldots, \eta_{t} \in K\right)
$$

We define the generalized fractional ideal of α : $I_{[\alpha]}=\bigcap_{i=1}^{t} I_{\eta_{i}}$ where $I_{\eta_{i}}=\left(R:_{R} \eta_{i}\right)=\left\{c \in R ; c \eta_{i} \in R\right\}$. We define the obstruction ideal of flatness: $J_{[\alpha]}=I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{t}\right)$ where $\left(1, \eta_{1}, \ldots, \eta_{t}\right)$ is the R-module generated by $1, \eta_{1}, \ldots, \eta_{t}$.

Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b, c, d \in R, a \alpha-b \neq 0)
$$

We denote by R^{*} the set of units of R and set $\Delta_{\beta}=a d-b c$.
Set $\varphi_{\alpha}(X, Y)=X^{t} \varphi_{\alpha}(Y / X)$. If Δ_{β} is in R^{*}, then it is easily verified that

$$
\varphi_{\beta}(X)=\varphi_{\alpha}(a, b)^{-1} \varphi_{\alpha}(a X-c, b X-d)
$$

Set $\varphi_{\alpha}(X, Y)=X^{t} \varphi_{\alpha}(Y / X)$. If Δ_{β} is in R^{*}, then it is easily verified that

$$
\varphi_{\beta}(X)=\varphi_{\alpha}(a, b)^{-1} \varphi_{\alpha}(a X-c, b X-d) .
$$

Our notation is standard and our general reference for unexplained terms is [3].
Let \mathfrak{p} be an element of $\operatorname{Spec} R$ and α an algebraic element of degree t over the quotient field of R. Set

$$
\varphi_{\alpha}(X)=X^{t}+\eta_{1} X^{t-1}+\cdots+\eta_{t},\left(\eta_{1}, \ldots, \eta_{t} \in K\right)
$$

and $\left(R_{\mathrm{p}}: R_{\mathrm{p}} \eta_{i}\right)=\left\{c \in R_{\mathrm{p}} ; c \eta_{i} \in R_{\mathrm{p}}\right\}$. Set $I_{R_{\mathrm{p}},[\alpha]}=\bigcap_{i=1}^{t}\left(R_{\mathrm{p}}: R_{\mathrm{p}} \eta_{i}\right)$ and $J_{R_{\mathrm{p}},[\alpha]}=I_{R_{\mathrm{p}},[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{t}\right)_{R_{\mathrm{p}}}$ where $\left(1, \eta_{1}, \ldots, \eta_{t}\right)_{R_{p}}$ is the R_{p}-module generated by $1, \eta_{1}, \ldots, \eta_{t}$.

Lemma 1. (cf.[1, Lemma 1.1]) Let R be an integral domain and α an algebraic element over the quotient field of R. Let \mathfrak{p} be an element of $\operatorname{Spec} R$. Then $I_{R_{\mathfrak{p}},[\alpha]}=I_{[\alpha]} R_{\mathfrak{p}}$ and $J_{R_{p},[\alpha]}=J_{[\alpha]} R_{\mathfrak{p}}$.

Lemma 2. ([2, Theorem 19]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b . c, d \in R, a \alpha-b \neq 0)
$$

with $\Delta_{\beta}=a d-b c \neq 0$. Assume that the following conditions hold:
(1) a is a unit of R.
(2) $\Delta_{\beta}+\varphi_{\alpha}(a, b) I_{[\alpha]}=R$.

Then $J_{[\alpha]}=J_{[\beta]}$.
Lemma 3. ([2, Theorem 22]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b . c, d \in R, a \alpha-b \neq 0)
$$

with $\Delta_{\beta}=a d-b c \neq 0$. Assume that the following conditions hold:
(1) b is a unit of R.
(2) $\Delta_{\beta}+\varphi_{\alpha}(-a,-b) I_{[\alpha]}=R$.

Then $J_{[\alpha]}=J_{[\beta]}$.

Lemma 4. ([2, Theorem 22]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b . c, d \in R, a \alpha-b \neq 0)
$$

with $\Delta_{\beta}=a d-b c \neq 0$. Assume that the following conditions hold:
(1) c is a unit of R.
(2) $\Delta_{\beta}+\varphi_{\alpha}(c, d) I_{[\alpha]}=R$.

Then $J_{[\alpha]}=J_{[\beta]}$.
Lemma 5. ([2, Theorem 26]) Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b . c, d \in R, a \alpha-b \neq 0)
$$

with $\Delta_{\beta}=a d-b c \neq 0$. Assume that the following conditions hold:
(1) d is a unit of R.
(2) $\Delta_{\beta}+\varphi_{\alpha}(-c,-d) I_{[\alpha]}=R$.

Then $J_{[\alpha]}=J_{[\beta]}$.

Since

$$
\varphi_{\alpha}(X, Y)=Y^{t}+\eta_{1} X Y^{t-1}+\cdots+\eta_{t-1} X^{t-1} Y+\eta_{t} X^{t}
$$

we have $\varphi_{\alpha}(-a,-b)=(-1)^{t} \varphi_{\alpha}(a, b)$ and $\varphi_{\alpha}(-c,-d)=(-1)^{t} \varphi_{\alpha}(c, d)$. Hence $\varphi_{\alpha}(-a,-b) I_{[\alpha]}=\varphi_{\alpha}(a, b) I_{[\alpha]}$ and $\varphi_{\alpha}(-c,-d) I_{[\alpha]}=\varphi_{\alpha}(c, d) I_{[\alpha]}$.

Theorem 6. Let R be a Noetherian domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b . c, d \in R, a \alpha-b \neq 0)
$$

with $\Delta_{\beta}=a d-b c \neq 0$. Assume that the following three conditions hold:
(1) $(a, b, c, d) R=R$.
(2) $\Delta_{\beta}+\varphi_{\alpha}(a, b) I_{[\alpha]}=R$.
(3) $\Delta_{\beta}+\varphi_{\alpha}(c, d) I_{[\alpha]}=R$.

Then $J_{[\alpha]}=J_{[\beta]}$.
Proof. Let \mathfrak{p} be an arbitrary element of $\operatorname{Spec} R$. By the condition (1), we see that $\mathfrak{p} \nexists a, \mathfrak{p} \not \supset b$, $\mathfrak{p} \not \supset c$ or $\mathfrak{p} \nexists d$. If $\mathfrak{p} \nexists a$ or $\mathfrak{p} \nexists b$, then, by Lemmas 2, 3 and condition (2), we have $J_{[\alpha]} R_{\mathfrak{p}}=$ $J_{R_{p},[\alpha]}=J_{R_{p},[\beta]}=J_{[\beta]} R_{\mathfrak{p}}$. If $\mathfrak{p} \not \supset c$ or $\mathfrak{p} \not \supset d$, then, by Lemmas 4, 5 and condition (3), we have $J_{[\alpha]} R_{\mathfrak{p}}=J_{R_{\mathfrak{p}},[\alpha]}=J_{R_{p},(\beta]}=J_{[\beta]} R_{\mathfrak{p}}$. Therefore $J_{[\alpha]}=J_{[\beta]}$.
Q.E.D.

Assume that $(a, b, c, d) R=R$. Then the converse of Theorem 6 does not hold, that is, even if $J_{[\alpha]}=J_{[\beta]}$, the conditions $\Delta_{\beta}+\varphi_{\alpha}(a, b) I_{[\alpha]}=R$ and $\Delta_{\beta}+\varphi_{\alpha}(c, d) I_{[\alpha]}=R$ don't hold in general:

Example 7. Let \mathbf{Z} be the ring of all integers. Set $R=\mathbf{Z}, \alpha=\sqrt{2}, a=1, b=0, c=0, d=-2$ and $\beta=2 / \sqrt{2}(=\sqrt{2}=\alpha)$. Then the following five assertions hold:
(1) $\Delta_{\beta} R=2 Z$.
(2) $I_{[\alpha]}=I_{[\beta]}=R$.
(3) $J_{[\alpha]}=J_{[\beta]}=R$.
(4) $\Delta_{\beta}+\varphi_{\alpha}(a, b) I_{[\alpha]}=2 \mathbf{Z} \neq R$.
(5) $\Delta_{\beta}+\varphi_{\alpha}(c, d) I_{[\alpha]}=2 Z \neq R$.

Proof. (1) It is clear from $\Delta_{\beta}=a d-b c=-2$.
The assertion (2) is obvious from $\varphi_{\alpha}(X)=\varphi_{\beta}(X)=X^{2}-2$.
(3) Since $I_{[\alpha]} \subset J_{[\alpha]}$ and $I_{[\beta]} \subset J_{[\beta]}$, we see that $J_{[\alpha]}=J_{[\beta]}=R$ by the assertion (2).
(4) and (5) We obtain $\varphi_{\alpha}(X, Y)=Y^{2}-2 X^{2}$. Hence $\varphi_{\alpha}(a, b)=\varphi_{\alpha}(1,0)=-2$ and $\varphi_{\alpha}(c, d)=$ $\varphi_{\alpha}(0,-2)=4$. Therefore $\Delta_{\beta}+\varphi_{\alpha}(a, b) I_{[\alpha]}=(-2,-2) \mathbf{Z}=2 \mathbf{Z} \neq R$ and $\Delta_{\beta}+\varphi_{\alpha}(c, d) I_{[\alpha]}=(-2,4) \mathbf{Z}=$ $2 \mathrm{Z} \neq R$.
Q.E.D.

In [2, Proposition 17], we have proved that $J_{[\alpha]}=J_{[a \alpha]}$ if $a R+I_{[\alpha]}=R$. So it would be natural to pose the following question: Assume that the following conditions hold.
(1) $(a, b, c, d) R=R$.
(2) $\Delta_{\beta}+I_{[\alpha]}=R$.

Then does the equality $J_{[\alpha]}=J_{[\beta]}$ hold? Unfortunately the answer is negative as the following example shows:

Example 8. Let $R=k[X, Y]$ be a polynomial ring over a field k in two indeterminates X, Y. Set $\alpha=Y /(X-1)$ and $\beta=(Y \alpha+1) / X \alpha$. Then the following assertions hold:
(1) $(a, b, c, d) R=R$.
(2) $\Delta_{\beta}=-X$.
(3) $I_{[a]}=(X-1) R$.
(4) $\Delta_{\beta}+I_{[\alpha]}=R$.
(5) $J_{[\alpha]}=(X-1, Y) R$.
(6) $I_{[\beta]}=X Y R$.
(7) $J_{[\beta]}=\left(X Y, Y^{2}+X-1\right) R$.
(8) $J_{[\alpha]} \neq J_{[\beta]}$.

Proof. (1) and (2) are clear from $a=X, b=0, c=Y$ and $d=-1$.
(3) Since $\varphi_{\alpha}(X)=X-\alpha$, we have $I_{[\alpha]}=\{c \in R ; c \alpha \in R\}$. Hence $I_{[\alpha]}=(X-1) R$.
(4) By the assumptions (2) and (3), we know that $\Delta_{\beta}+I_{[\alpha]}=(-X, X-1) R=R$.
(5) $J_{[\alpha]}=I_{[\alpha]}\left(1, \eta_{1}\right)=(X-1,-(X-1) Y /(X-1))=(X-1, Y) R$.
(6) Since $\beta=\left(Y^{2}+X-1\right) / X Y$, we have $I_{[\beta]}=X Y R$.
(7) $J_{[\beta]}=I_{[\beta]}\left(1,-\left(Y^{2}+X-1\right) / X Y\right)=\left(X Y, Y^{2}+X-1\right) R$.
(8) We will prove that $X-1 \notin J_{[\beta]]}$. Assume the contrary, that is, $X-1 \in J_{[\beta]}=\left(X Y, Y^{2}+X-1\right) R$. Then there exist elements $f(X, Y)$ and $g(X, Y)$ of R such that

$$
X-1=X Y f(X, Y)+\left(Y^{2}+X-1\right) g(X, Y)
$$

Substituting X by 0 in the equation above, we have $-1=\left(Y^{2}-1\right) g(0, Y)$. This is the contradiction. Hence $X-1 \notin J_{[\beta]}$. On the other hand $X-1 \in J_{[\alpha]}$. Therefore $J_{[\alpha]} \neq J_{[\beta]]}$.
Q.E.D.

Finally we prove a relation between $J_{[\alpha]}$ and $J_{[\beta]}$.
By the proof of [2, Lemma 1], we have the following:
Lemma 9. Let R be an integral domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b . c, d \in R, a \alpha-b \neq 0)
$$

and set $\Delta_{\beta}=a d-b c$. If $\Delta_{\beta} \neq 0$, then

$$
\Delta_{\beta}^{t} I_{[\beta]} \subset \varphi_{\alpha}(a, b) I_{[\alpha]} \subset I_{[\beta]}
$$

where $\operatorname{deg} \varphi_{\alpha}(X)=t$.

Remark 10. The inclusion $I_{[\beta]} \subset \varphi_{\alpha}(a, b) I_{[\alpha]}$ does not hold in general as Example 7 shows.

Proposition 11. Let R be an integral domain and α an algebraic element over the quotient field of R. Let β be a linear fractional transform of α, that is,

$$
\beta=\frac{c \alpha-d}{a \alpha-b} \quad(a, b . c, d \in R, a \alpha-b \neq 0)
$$

and set $\Delta_{\beta}=a d-b c$. If $\Delta_{\beta} \neq 0$, then $\Delta_{\beta}^{t} J_{[\beta]} \subset J_{[\alpha]}$.
Proof. Let K be the quotient field of R. Set

$$
\varphi_{\alpha}(X)=X^{t}+\eta_{1} X^{t-1}+\cdots+\eta_{t},\left(\eta_{1}, \ldots, \eta_{t} \in K\right)
$$

and

$$
\varphi_{\beta}(X)=X^{t}+\lambda_{1} X^{t-1}+\cdots+\lambda_{t},\left(\lambda_{1}, \ldots, \lambda_{t} \in K\right)
$$

By the equality

$$
\varphi_{\beta}(X)=\varphi_{\alpha}(a, b)^{-1} \varphi_{\alpha}(a X-c, b X-d)
$$

we obtain $\varphi_{\alpha}(a, b) \lambda_{i} \in\left(1, \eta_{1}, \ldots, \eta_{t}\right)$. Furthermore, $\varphi_{\alpha}(a, b) \in\left(1, \eta_{1}, \ldots, \eta_{t}\right)$. Therefore

$$
\varphi_{\alpha}(a, b)\left(1, \lambda_{1}, \ldots, \lambda_{t}\right) \subset\left(1, \eta_{1}, \ldots, \eta_{t}\right)
$$

By Lemma 9, we have $\Delta_{\beta}^{t} I_{[\beta]} \subset \varphi_{\alpha}(a, b) I_{[\alpha]}$. Hence

$$
\Delta_{\beta}^{t} J_{[\beta]}=\Delta_{\beta}^{t} I_{[\beta]}\left(1, \lambda_{1}, \ldots, \lambda_{t}\right) \subset \varphi_{\alpha}(a, b) I_{[\alpha]}\left(1, \lambda_{1}, \ldots, \lambda_{t}\right) \subset I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{t}\right)=J_{[\alpha]}
$$

This shows that $\Delta_{\beta}^{t} J_{[\beta]} \subset J_{[\alpha]}$. Q.E.D.

References

[1] K. Baba and K. Yoshida: Anti-integral extension $R[X] / R$ and invertibility of $\alpha^{n}-a$,Tamkang J. Math.,35(1) (2004), 1-12
[2] K. Baba and K. Yoshida: The relation between obstruction ideals of flatness with respect to an anti-integral element α and a linear fractional transform of α, submitted to Comm. Alg.
[3] H. Matsumura: Commutative algebra (2nd ed.), Benjamin, New York, 1980.

