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Abstract

The P, M and inverse P, M problems are considered based on the projective geometry. Reciprocity between the direct
and inverse problems is put emphasis on. The reciprocity simultaneously solves both problems. P-positions of ordered 4
vectors are introduced. As for the direct problem, a vector p normal to coordinate vectors e, (i € @) and column vectors
a; (i € ﬁ) of a given matrix A of order nis uniquely determined up to multiple of a positive real number, if and only if o
and B are disjoint index-sets of N ={1,2,---,n} and the order of the union of & and f is equal to n—1. Among such
vectors, the P-position gives rise to two sequences in mutually opposite directions with starting vectors ¢, and g, ; here,
a; is the dual vector of a,. The sequences provide conditions for the P, M-matrix and the inverse P, M-matrix.

Keywords: P-matrix; M-matrix; Inverse M-matrix.
1. Introduction

A classification of matrices in class Z was primarily published in 1992 by Fiedler and Markham [1]. This classification
contains the classes K, [2], N, [6] and F; [8]. Introducing a direct extension to classification of matrices in class Z, the
author deals with a geometrical representation of matrices in classes M and inverse M. Here, an inverse M-matrix is a

nonsingular M-matrix.
2. Positive position

A matrix A is assumed one in the set of all matrices of order n with real entries, denoted by i, (R) with the set of
all real numbers R; thatis, A € Af,(R). Detail of the notation is further described in [3, 4].

Definition 2.1. Let p,q,r,s be vectors. [p,q,r,s] is defined as
def
[p.q.r.s]=q.,reV(ps),geV(pr)-R'r
with the polyhedral cone V(ps) composed of p, s and the set of all positive real numbers R*. Such vectors P.q,r,s in
this order are called to be in positive position, abbreviated to P-position. By taking account of the order of D.q.1,s, they

are written as (p,q,r,s), that is, all the P-positions represented by [p,q,r,s] are places in (p.q.r.5).

[p.g.r.s] is equivalently expressed as gq,re[ps], ge[p.r), where [p.s]2 {w+(1-1s|0<e <1},
[p,r)é{tp+(l-—t)r|0<t31}. {p}={a} or p2q implies p=1tq with some positive real number ¢, namely,
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R*p=R"g; p is called to be positively parallel to g, or p and g are to be positively parallel. [p,q,r, s] is obviously
equivalent to [s,7,g,p]. If g=r, [p.g = r,s] stands for g €[p,s].

The relation p ~ g defined as p = q is an equivalent relation. The quotient space of the n -dimensional Euclidian
space R" by the equivalent relation, RZ, is here called a projective space of dimension n—1 which is denoted by P".

In P™', p isidentified with ¢ if p=g.

ies _ b, b, _
Proposition 2.2. Let B= b b such that (gr)=(ps)B.
21 22

0) gre[ps] © B20, b, +b, >0 (i=1,2). 1) [p.q.r,s] & |B|>0, B20.
2) [p.g2rs] & |B=0, B20, b, +b,,>0 (i=1.2). 3) [p,r.q.s] & |B|<0, B2O, b, +by, >0 (i=12).

Proof. 0) g,r€[p,s] gives
tg=up+(1-u)s (1>0,0<u<1), wr=(1-v)p+vs (w>0,0<v<1).

Then,
u 1-v
" u+v-1 1 1
B= liu »: 20, |Bl= ,b||+b2|=?, b]2+b22=;.
t w
Hence, b, +b,; >0 (i=1,2).
Conversely, by taking u= l:'_‘ , u satisfies 0<u<1. Then, tg=up+(1—u)s with 1= T Similarly,
n 21 n 21

b22

leads to wr=(1-v)p+vs with w=
12 + 22 12 + 22
1) ge[p,r) is equivalent to 1g € [p,wr) with some 1,w>0. Since fg and wr lie on the segment pg, 1g €[p,wr)

v= and 0<v<1. Then, g,r€[p,s].

is equivalentto 1-u<v or 1<u+v. Then, |B|>0. By the way B holds, i.e., B2 O because [p,q,r.s] is g,r €[p,s]-
Conversely, since |B|>0 and B2 O, b,b,, >b,b, 20 and so b,,, b, >0. Then, b, +b,;>0 (i=1,2). From0),
and w=

n + 21 blZ b22
2), 3) Proof is quite similar to 1). ]

g,r €[ p,s] follows. By taking t= , |B|>0 yields u+v>1. Hence, g €[p,r).

Let o, B be subsets of N={1,2,--,n} and pj be a vector such that (p;,e,.)= 0 (iea)and (p;‘,a,.)=0 (i € B) with
the ith column vector a; of A. Here, (p,q) is the inner product of two vectors p and g. The order of « is denoted by

. In the case of |e|=|B], |, 4| is the determinant of a matrix A, , composed of entries a;; of A with i€ o and je B.

Anp

def (1, 0y ++1
Let 0 be a permutation of & defined as 0, =(i22 I:) with & ={i,i,,-i,} (i <iy <---<i,). For simplicity, is

denoted by |A,,| incase a=p. If o and B are disjoint, @ U B is written as a+f . {i} is simply written as i. For
disjoint & and B such that a|+|B|=n—1 and {j}= N—(a+p), the ih entry of pj is expressed as

(—l)aﬁ”(i)wﬁﬁwlAﬂ*J-"-ﬂl (ieB +J)
0 (fea)

Especially for f=@, ph is denoted by p"”, and p" Ze¢, with the ith coordinate vector ¢;; for a =4, p2, or
simply p,._; is positively parallel to a; which is the dual vector of the ith column vector a; of A (see [4]). Now let

a={iniyi,} (522), B={j,j,} <@ (ji#Jj,). The ithentry of p is represented as follows.
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— i (if+0g—j . . — i (Y 0a—jn i . .
(=1) ji(i#oa—j (j2) lauci:.n-u ? ca- .:v - (-1)%e-i2 Hoa-j; (it) >n-¢.:t.n-u AN ca- bv
—a+ -a+ -
?uuw \_vm = Aﬁn- v.. B ’
0 (ieN-a+j) 0 (ieN-a+j,)
AICES&&E \»n-...n-b_ Q c Qv ) AICQQA?SQV >nL.a-\_ O. e Qv
(p2), = : (pic5), = :
0 (ieN-a) 0 (ieN-a)
In this case, B is given by
N-a N-a N-a+j| N-a+j B . ANC
Po-jyPa-jy | =\Pa-p = Pa-p
Theorem 2.3. Let Arp >0.
[Pras pics P P 2] & JAl>0, (1), 20 (ijep).
Proof. From the j, and j,th entries of (2.1), it follows that
()+oals2)
W lpe Au ] (cpatnreatally 02
a-p (- CqQC:.EnCuv \»n-.\_b-h_ _ >a¢__

In case a— B+ @, Cor. A.2 shows that eqn. (2.1) holds with B in (2.2) for the entries other than the j, and j,th; here, is
used

A A A

a-(i+j2).a-p

_ - C_.S Hi2li] c_su_é_s_

ap Ay _ +(- a-j1.a-2 _ :

nn..nlu a-~(i+j] ).a-p

If i ¢ a, the ith equation of (2.1) becomes 0= 0b,, +0b,,. By Prop. 2.2.1), — nn..wt_ , vu..m P vu..wS_ is equivalent to

. A
- -j2.0 i
A, u_ a-jp.a __ >0, (-1 vqn:gas n-:i_Vo _&mbv
a-jl.e-f2 _ Aa-i _
Combined with Prop. A.4, the equivalence of the theorem is seen. 0

From Prop. 2.2, the following properties are immediately obtained.

Corollary 24. Let }i >0.

1) —Ezunt_ .ﬁh«num ﬁu.:n.ﬁu::wiL o _> _I QQSEQS A, o >0 A ije \wv
e sA_Eps_?-...i >0 (i,jepB,i#j).

2[R ] e <o IOl 20 (e p),

_ >n-.._ +Al&o&;€n€

Areiant]|>0 (5 € B i ).



14 Yoshimitsu Iwasaki

3. Geometrical representations

For given o and B such that [p:_";”z, Pocp+Papys p:_':‘“] each component in the brackets is uniquely determined
except for positive coefficient. In fact, since f= { Jis ]2} C ¢, the union of the super and sub index-sets of p contains at
most N—j, for the first two vectors of the brackets and N-j, for the rest two. f and g are defined as

p;'_']'i‘ = f(p,','_’;‘”’) and p;’:;+’2 = g(pa_n) then, go f=id. Consider the following two sequences from the left to the
right (L-sequence) and in the reverse direction (R-sequence) :

Nl pN-(nm) B pr-tinen) B I wienesin) _

e i =py., =4 .
f o vy Pr2ei3 o o) Prsiesin Pr-y =4

1=
In general, for given disjoint index-sets o ={i,i,,+-,i,} and B={j,,jp,+,j,} With &+ B =N-1i, the L-sequence:

nei (i) 2 wionen) 5 B wlisieiesn) _
e —p Hp] ’—)]) i J1+i24+jp pﬂ

yields a mapping f, such that pj = f,(e;) with f, = f,o f, o---o ;. On the other hand, the R-sequence:

. gl . g3
2~ 1 i1+ i) +iQ+-ig a
a; = pN-inN-(lﬂ]) pN-(:+:|+42)H pN—(lﬂl*Q-& -ig) pﬁ

provides g, definedas p; =g, (a,') with g, =g,og, 0--0g,.
Let
L (,)d;'{ N-(i+B)
1

i o 2y P Ipl= 1}, LO={p"}2fe)

and

L &' ~ .
Ri(s)‘:{P;-(im) 3g,:a; P P;—(na)’ o] = "'} . R(0) ={P~-i} = {al }

Then,

L(0)={p""}#{e},

L(1)= { N-(i+1) N-(i#Z),“.’pi)il—(i#(l-l)) pN-(w(M)) pu-(m)}’

N-(i+1+2 N—(i+143 N-(i+14(i=1)) _ N=(i+14(i+1)) N=(i+1+n) __ N=(i+2+3) N=(i+(n-1)+n)
L(2)= {Pm(lH )’Pu;(” RS 1+(i-1) s Praivy) v Pun s Doy 2" "5 P(net)in

L(n-1) ={Pm-i}é {a,.'},

and reciprocally
0)={pn.}2 {ar}
R()= {pL-(i.,,, Prgivay”” -,p}','_‘(,-,(,..,),,pﬂ,,(,.+,,),---,p,"v-(,-w} ,
R(2)= {pif.’(.ﬂn),p,v-(.my Doty Prsonony” P hctistony Petiozssy wp,v".'(',l’(”,-.m)}
R(n —.]) = {p””} 2le}.

Thus, the following propositions are derived.
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Proposition 3.1.
pp eL(k) (0s3k<n-1) = pjeVl.
Here, VI is the cone generated by the coordinate vectors e; (0<i<n).

Theorem 3.2.
n-1 n-1
Once there exists k such that L(k)=R,(n—1-k) and |L,.(k)|=( k ) with the binomial coefficient ( k ),
-1 .
L(j)=R(n-1-j) with |Li(j)|=(n . ) is satisfied for any j such that 0<j<n-1; especially, L,(n—l)é{ai},
J
R.(n—1)2{e;} hold.

L(k) gives A,.+ﬂ>0(ﬁcN—i,,B={j,]j,Sj,<j,+,Sjk}) and  R(k+1) yields |4,,|>0

(a cN-i,a= {i, | 4 <i, <i,, <i, }) Therefore,

Theorem 33. Either R(n-1)=L(0)2{e,} or L(n-1)=R(0)2 {a,.' } for any i in N is equivalent to A eeAf. Here,
4 denotes the set of all M-matrices.

Combined with Theorem 3.3,

-1
Corollary 34. Forany i in N, there exists k (0<k<n-1) such that L,(k)=R,(n-1-k), |L, (k)= (nk ), if and only if
Acetf.

The sequence of {L,(k)}

of {R,(k)} ostss 10 the inverse P, M-problem, by substituting for a;, where g, is a given matrix A with all nonnegative

osrs, TENAtES to the P, M-problem of A whether A is a P, M-matrix or not, while the sequence

n-1 ; ; .
entries. In the P, M-problem, L,.(1)=( . J (Vie N) implies that A is an L-matrix. In fact, (p”", p)D i ph-i )

are in the P-position, so that 0 < (pJN-(M))} =a;, and 0< (pj"'(’*’))i =-a,, (ij_(""l))r =0 (r eN-(i+ J)) Therefore, the

P-problem is equivalent to the M-problem.

In the inverse problem, A is & priori assumed nonsingular. It is further necessary for A7 to be an M-matrix that A~

.

' . !
is an L-matrix and |A"|>0 or |JA|>0. A™ =ﬁ yields (4™) =ﬁ. Here, A’ is the dual matrix of A and ‘A denotes

the transpose of A. For L-matrix A™ with |A|>0, A™ is an M-matrix, if and only if V(A"). c VI (Theorem 3.6 of
[4]). Thus, for the inverse problem we consider a matrix with all nonnegative entries. The reciprocity of the R-sequence
with the L-sequence leads to the following theorem and corollary, corresponding to Theorem 3.3 and Cor. 3.4.

Theorem 3.5, Let A™ =(a',,).
Either R,(n-1)=L(0)2{e,} or L(n-1)=R(0)2{a}} (VieN) & A" eetr.

Corollary 36. Let A = (a’i j).

-1
VieN,3k;0<k<n-1, L (k)= R(n-1-k), ]L,.(k)|=(nk ) e Al eedt,
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Here, it is noted that w..?lcm?.@ for any i in N implies A™ €& with the set of all L-matrices, «2. In fact, as

mensioned above in the P, M-problem the offdiagonal (i, j)-entry of A7 is given by AS:-?:V which is nonpositive and

?-_ v: = A Pz-c.év\ >0, since T.. &f?c. pNt e \v are in the P-position.

Example 3.7.

Let ZH?N.PA.& and i=1. By omitting + in the index, all elements of PQ& are €xpressed in case

-1
mi={")

L©)={p*}2{a},

L(1)={p3* P3P P}
thus, |A,|, |As|» |Ail, JAis|> O corresponding to the vectors in the braces of L,(1) (Theorem 2.3),
L(2)={ps.p}. 3. P4, P Pa}:

thus, |Aps]s [Ae]s [Ans]s [Aisa]s |Aiss]s [Ases| >0 corresponding to the vectors of L,(2),

L,(3)={P3er Phsss Puss Plas

thus, [Agaa|s [Aizs|> |Arss]» JAsses|> O corresponding to the vectors of L,(3),

L(4)= *wmawm ?_.T

thus, |A|= _>_~§_ >0. The above procedure is schematically drawn in Fig. 3.1.

n-1 n-1

Reciprocally, for the R-sequence, (n—-1)-k = & is the maximum order of R,(k). In this case, all elements of

R,(k) are given by
R, on = *PBL 2 T_. v ,

R()= ﬁku.wwa.&u&ﬁwx?
thus, |A|=]A,|> 0,

R(2)={pZ.p%.p%. P} Pa. Py |3

thus, [Asis]s |Aus]> |Aiss|» [Ais] > O corresponding to the vectors in the braces of R(1),
R(3)={p®.p*.p}*.p3"};

thus, |Ass|s sl [Aisals JAus]s [Aszals [Aizs| > O corresponding to the vectors of R(2),
R (4)= Tvnﬁu 2 TL 5

thus, |A,|, |As|, |As|. JA1,]> 0 corresponding to the vectors of R,(3).
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L,(4)={Ppyus} 2 {a7} assures that [p}5*, plp . pipt, pls™ | holds for all @ and B
with ||=2,3,4,5, fca and |ﬁ|= 2. Thus, all principal minors of an L-matrix A with the indices containing 1 are
positive. Furthermore, L,(4)= {a,.' } (i=2,3,4,5) is asserted; hence, A is a P-matrix and so an M-matrix.

L,(0) L,(1) L,(2) L,(3) L(4)
P
5
p® P P
3
p¥e Pas Pass o
e = sz Pas =G
pzas szf ])3
4 245
P )
Psm » Ps
Pas

Fig. 3.1 Schematic daiagram of the L-sequence for N ={1,2,3,4,5}.

4. P, M and inverse M-problem in low dimensional cases
4.1 Pand M-problem

The P and M-problem on an L-matrix A of orders 3 and 4 is discussed. For an L-matrix, the P-problem is equivalent
to the M-problem. Figure 4.1 to 4.3 are of order 3 and 4.4 of order 4. Figure 4.1 is an example that L,(1)= {p,z}
pr e Li(1), since p, 2a; ¢[p},p;]. p} e L (1) implies |A,|<0. The figure indicates a case of |A|<0. Then, 4 is
neither a P nor an M-matrix. The second one shown in Fig. 4.2 is not a P or an M-matrix, either. L(1) (i=1,2,3) is of

2
order (1), while L,(2)=@ for i=1,2,3. In fact, [pg, Pa3s Pias p;] is out of the P-position; then, L,(2)=@. Similarly,

L,(2),L,(2)=2 are seen by (p,’, PisPr>pPt) and (P3P P p2) out of the P-position, respectively. However,
[ Phits Piorivas Pivnts p}:,’] with the indices represented by 1, 2, 3 modulo 3 holds for i =1,2,3. It implies that [4|<0. From
ILi(I)l= 2 for ie N, all principal minors of order 2 are positive. Figure 4.2, therefore, shows a projective geometrical
representation of the almost P-matrix of order 3 (see [7]). Figure 4.3 depicts the case where all linear arrays of 4 vectors

are in the P-position, so that A is a Por an M-matrix. Figure 4.4 exhibits a case of a P, M-matrix of order 4.

e%p PP e sp
Fig. 4.1 Vectors p; for a non M-matrix A of order 3 Fig. 4.2 Vectors p; for a non M-matrix A of order 3

in the projective space P?. in the projective space P? (almost P-matrix [7]).
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e 2p™ Py P’ e=p”
3
. 123 a » 2
€ =P23< 2)1’23 =q p23 PN ﬁn‘ Py | S u
p3 1 N\ 24 p 1 14
;3\ ¢ P2
: 20 Py a; p//
=a, 3 R
125 a, P
2 3 o
Py, S P234 /1 a, 24 ;4
pi P2
3 13
/] Py . "
P
P/ bt ANEAN
a2p™  py p e 2 p
Fig. 4.3 Vectors p; for an M-matrix A of order 3 Fig. 4.4 Vectors p; in the projective space P°.

in the projective space P.
4.2 Completion of inverse M-matrix in projective space

Consider geometrically the inverse M-problem of a matrix of order 3 in the 2-dimensional projective space P2, Let
A= (a,. ,) be a nonsingular nonnegative matrix of order 3. a, and a, are plotted in the cone VI (Fig. 4.5). We determine
the domain of a,, D(a,), such that A is an inverse M-matrix. The condition of the inverse M-matrix requires that
[p?.a,,,,p}] is in the P-position. Furthermore, p} €le,.e;) and p} €[e,,e,) are prerequisite for the existence of p; and
p; in the P-positions of [e,, pi, p,z,e,] and [ez, 28 p;,e,], respectively . By the condition for the existence of p, so as to
satisfy [e,, P p;,e,], a, should be found in V(a,ple, ). The condition for pj' requires a, € V(a,e;p3). The nonsingularity
of A prohibits a, €[p},p}]=V(pip;). Hence, a, € V(a,a,¢,)~ V(a,a,). Further, the condition that [e,, p},p}.e, ] is in
the P-position restricts the domain D(a,) to V(e;q,9,9;). Without g, £¢, (i=1,2), the three vectors g; are given by
[0} V(esa)nr(e,a,), {g,}27(e1a) N 7(e,a,) VI, {g,} 2 V(esa,) N 7{eqa, ); here, 7(ab) is the plane generated by
linearly independent vectors a and b. In case a,Ze, or a, e, the domain D(a;) is V(e,q0a,)—V(a,) or
V(e;3,9,)~ V(a,), respectively, where {g,}2 V(e,e,)n7(e,a,) and {g,}= V(ese,)N7(e,a,). Conversely, geometrical
consideration readily admits L,(2)={a,} (i=1,2,3) (Fig. 4.6). Thus, A is an inverse M-matrix.

Fig. 4.5 Projective geometrical representation Fig. 4.6 Construction of py so as to be in the P-position

of the inverse M-matrix of order 3. based on a,, a, and a,.
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5. Concluding remarks

The M and inverse M-problems of an L-matrix correspond to the L and R-sequences, respectively. According to the
reciprocity of the two sequences, it suffices to treat one of them. For both the M and inverse M-problems, solution is

readily found in the projective space of the cone encased by the coordinate vectors.
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Appendix

Let v, 8 be nonempty subsets of o, and v =@ with v={1,2,---,v[}.

Theorem A.l. [5]

A A
1C.ﬂc

2,

yev
Irl=18|

=lAl4dl.

v4y. v+

or

= - A4, (Bné=2)
A A = = l o

rm‘2=21 vy, vaB || tvre v ynglo A,C_ ACH"7eC 5C { 0 ( ﬁ NS = @)
+E=V +c=vc

o frcle

for a subset § of a and§ V. If Bn& =0, then |v|+|B|+|8|=|o.

. . . NaTi) ) fme s T AL U
By remarking the relation o(i)=0,_;(i)+[i/j] for i e @~ j with [i/] ={1 ((i S j) , the following corollaries are obtained

as special cases of Theorem A.1. For Cor. A.2 to Prop. A.4, one defines B={j,.j,} ca (j, # j,).

Corollary A.2. Let ica—f.

4,4 _(_D["/ilHl'Z/fl] A A

a-i.a-jp

Aa—jz | _ (_1 )[i/12]+[i|/i2] A

o-(i+j1).a-p a-(i+j2 )a-B || e-ia-j2 | =0.
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Corollary A3, Let klea-f (k=1).

__(_l)lk/11]+[k/12]*[l/11]+[I/12] A

A

a-B.a-(k+j2) Au-ﬂ.u—(l+j|) a-p.a-(1+j2) Aa-p.a—(k+]1)

+(_1)[*Iil]+["/i2]*['/Jl]*['/J2]| Aup =0.

- Aa—ﬁ.a-(kH)

The following proposition A.4 is essential to attain Theorem 2.3. Though Cor. A.3 is a special case, the proof is given

below reflecting 3 parts of Theorem A.1 as k and /in Theorem 4.1[5].
Proposition A.4. For s22 (s=|a]),

A

Aﬂ-}‘.’ a-ji
|A

“h = Ao Al] Witk |Ag|=1.

a-j]

IAa—j] a-f2 |

Proof. Let u,,(k)=Jj,=[j,/i.]+k-[ki.] » V.. K)=Jj, =3 /i ]+ k=[] (uef1,2}).

Aa-n Ageit| =~ [Aa-na-n As-jp.a-n
- u12(k) . _1\#21()
= [kgjz (-1) j Aa—ﬂ.a-(k+jz) }[‘e;‘( 1)*™a,, Ayopa-(ien) ]
v21(k) vi2()
‘(mz_;z (-1) ok An—ﬂ.a-(k+}2) I’;l (-1) Ay Aa-ﬁ.a—(h/]) )
— _q\H12(k)+u21()
= wzn( 1) (am“;zl aJZkaill)Aa-p.a-(hjz) A pa-iivi)
lea-j]
m1l) m(l)
k; 1) lAﬂ 1+l ﬂ-ﬂ a-p. n—(l+n) kz I Bu(k+i2) Aa—ﬂ.a-(wz) Aﬂ-ﬁ
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By Cor. A.3, the last end side of (A.1) is shown as
‘Aa-ﬁ.a—(k-rjz) Aa-ﬂ.a-(lﬁ]) _(—1 a-p.a-(1+j2) Au-ﬂ,a—(hjl)
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Theorem A.1 is, therefore, seen

(the last side of (A.1)) =

by the division of the 3 parts according to k= jj,l€a—ji; jy#k€a=Jj,, 1= jp; kilea-Bk<l. O



