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We treat a model of Poincaré gauge theory (PGT) which can be compatible with general relativity. The equations
obtained are rewritten in complex Einstein-Yang-Mills forms. We pick up its special case, “Abelian solution” where
the equations are essentially reducible to complex Einstein-Maxwell equations. On the other hand, we define certain
“complex” phase transformations by extending ordinary phase transformations. Then we find that the same complex
Maxwell equations as those from PGT can be obtained from an gauge theory based on the “complex” phase transformati
ons. On the basis of this fact we conclude that the sources for the Lorentz gauge field may be a composed of at least two

Dirac fields, if the sources are Dirac particles.

1 Introduction

Poincaré gauge theory (PGT) was founded by
Utiyama[1] and Kibble[2], and later developed to a
more general model with nine independent parame-
ters by Hayashi[3] and Hehl and his collaborators[4].
Since then, some special solutions have been solved
in several models[5], and also variant conditions
have been imposed on the parameters from various
requirements[6].

Generally speaking, PGT is a theory with two
gauge fields, namely a translational and a Lorentz
gauge field, and it is geometrically interpreted as a
Riemann-Cartan theory with a curvature and a torsion.
This is done by identifying the Lorentz gauge field
with an affine connection through a requirement: Kib-
ble’s covariant derivative of a vierbein field should van-
ish. However, we adopt here a model which can be
interpreted as an Einstein theory associated with the
Lorentz gauge field. This selection is based on both
the simplicity and experimental or observational re-
sults which appear to justify the Einstein theory at least
in macroscale.

It is well-known[7] that any Yang-Mills theories
based on arbitrary internal gauge symmetries are re-
ducible to the Maxwell theory in a special case. And,
of course, the Maxwell theory can be derived from

gauging any phase transformations. In the same way,
PGT is reducible to complex Einstein-Maxwell theory
through complex Einstein-Yang-Mills theory[8].

In this paper it is shown that the complex Maxwell
theory can be derived from a gauge theory based on
gauged and extended phase transformations.

And also we consider the gauge theory in such
a case that the complex Maxwell field is interacting
with Dirac fields. Then we conclude that the complex
Maxwell field must be generated by a pair of Dirac
fields. From this conclusion we infer for the source
of the Lorentz gauge field to be a combination of at
least two Dirac fields, if the sources are composed of
Dirac particles.

In the next section we review how a compatible
PGT model with Einstein theory is reducible to com-
plex Einstein-Maxwell theory. And then we consider
the transformation property of the Lorentz gauge field
as a complex Maxwell field under the Poicaré gauge
transformations. As a result, we find that the com-
plex Maxwell field is transformed like the ordinary
Maxwell field except that it is a complex quantity. That
is, the Poicaré gauge transformations behave like gen-
eral coordinate transformations plus gauged complex
phase transformations for the complex Maxwell field.

In Sec.3 we extend ordinary phase transformations
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and research a gauge theory based on the extended
phase transformations. And such a case is considered
that the source is composed of Dirac particles. Finally,
the gauge theory is compared with the theory reduced
from PGT. The final section is devoted to conclusions.

2 Compatible model with general relativity

2.1 Preliminaries

Let us consider a set of matter fields ¢ = {g4/A =
1,2--- N} which transforms as §q = —wkmS"”‘q un-
der any Poincaré transformations: §z* = w*,, 2™ +€*.
Here S*™are generators for Lorentz transformatlons
and, in particular, S*™ = —lgkm = _f[yk y™] for
¢ =Dirac fields. Now, we assume that the behavior of
q is controled by an action [ d*z Ly (g, g,k ), which is
invariant under the Poincaré transformations. Here ¢
means the derivative 2%, and L/ (g, ¢« ) is Lagragian
density for q.

It is well-known[2] that when the Poincaré trans-
formations are gauged, namely

Sk = Wk
Jq_—-

m(z)2™ + € (z) = sz = P (x)
( ) Skm

2.1)
then the ordinary derivative ¢,, must be replaced by
the covariant one Dyq for the Lagrangian to keep its
invariance. Here Dy is defined by two gauge fields, a
translational gauge field ¢, # and a Lorentz gauge field
Akmy, as follow:

Diq = b* Dyug = b {a,u +5 Amnu S™"} (22)

with
be* = 6* + et

Incidentally, b, * is called vier-bein or tetrad field. The
field strengths for these gauge fields are defined as

kauu = Akmu,u _Akmu,u'l"AkrpArmu"‘AkruArmu

and

Ckmn = Ckmn + 2Ak:[mn])

where we put Agppn = Agmubs® and A7,

"% Akmy With Minkowski metric n*™ (= i)
dzag (+1,-1,-1,-1). And also cgmn
by, (bmbbs” — bp#bpy”) with by, defined by
bk ubm* = 7. Hereafter we shall use the Minkowski
metrics 7™, 7, to raise or lower the latin indices and
the metric g#” = byHbkY, g, = b¥ by, to raise or
lower the greek indices.

I

2.2 The action

In our purpose we adopt the following invariant ac-
tion

I = /d4$b(LM(q,Dk4)
_ g_ T T kmn V V ok V V pk
50" Cemn” C 3 CV'e 2 CkV'C
+ a1 Fkmp, FF™H 4 aF). (2.3)

Here a and q; are coupling constants and 7 Cypy,, - - -
are the irreducible components of a field strength
Cikmn- And F is defined as

F = bFHb™ Fnp.
And also b = —det(bx,) is needed to make the action
invariant.
The Action (2.3) can be also written as
I= / d*2b(Las (9, Diq) + aR + a1 Fompu F¥™),

2.4)
omitting a divergence term and using the identity

F= R +§TckmnTckmn _ gvckvck
+ gf‘c,x‘c" + (26b™#Y Cp) /b

Here R is a scalar curvature which is made from Ricci
tensor R, through Riemann tensor R*,,,, defined in
terms of the metric g,,, .

By the variational principle we can then derive the
following equations for the Lorentz gauge field and for
the translational gauge field, respectively:

kanp,p - Arkarmnp - Armkarnp
- Arerkmnp - Anrkamrp
1
= 4_SMkmn (2.5)
a
1
py wp_— w 7% 2.
R - 59 R= 2a(TM +TL™) (2.6)

Here we put Firmpnp = bn#bp” Fympy and Fimpp P =
bP¥ Frmnp,u- On the other hand, A, are Ricci’s ro-
tation coefficients defined in terms of b’s and its first
derivatives as

1
= E(Ckmn + Cmnk + cnmk)-
Sy and Ty, are the spin-angular momentum and the
energy-momentum tensors of the matter field ¢, re-
spectively. And Ty #¥ is the energy-momentum tensor
of the Lorentz gauge field:

Agmn = AIs:mu bn*

T = —4a, (g“anmAanm)‘u_%g#qumAanm,\n)-
2.7
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2.3 Covariant derivatives
The original Kibble’s covariant derivative[2] has
been defined by
Dya=a,+ %Akm#skma S I N

for a generic field o transforming according to
1
2

The affine connection I'* uv 18 then given by

T2, = b (b, + AT ,).

b = zwkmS* Mo+ €* LT a.

This connection has been derived from the requirement
that the covariant derivatives of the vier-bein compo-
nents should vanish,

D,b” =0, etc. 2.8)

However, we adopt here an extended Einstein’s covari-
ant derivative! which is defined as

Via=a,— %Akmpskma+{ l;\’/ } Tha (2.9)

for the same « as above, where )\u } is a Christof-

fel symbol. The definition is coming from the original

Dyo. In fact, for the generic field o, the covariant
derivatives D, and V , « are related by

Dua = V,a+ %Kkm,,S'""a + Kimub¥*b™, 53" o,

This is easily known by noting the relations Ag,,, =

A
Kimy—Akmy and Agpp = — { v }bkxbm“bn"+

b F by brp,, Where Kimp = bp# Kimy is called a
contortion and given by Kimn = 2(Cimn + Crnk +
cnmk)~

The covariant derivative V, satisfies the condition

Vb =0, ete., (2.10)

in place of the condition (2.8) and therefore the metric
condition V, g», = 0 is automatically satisfied.

We shall also use another covariant derivative
(;,), which is equivalent to V , o but it is restricted to
operate on world tensors only. Accordingly, the covari-
ant derivative is just equal to the Einstein’s covariant
derivative. It should be remarked that it also satisfies
the metric condition

Juvix = V)\guu =0,
but
bt 0.

2.4 Field equations

Using the covariant derivative V,, the equation
(2.5) can be written as

bp#vu kanp - Arku Frmn# - ArmyFk:r'n#
- ArkyFrmn” - Armqurn#
1
- ESMkmrv

Furthermore, when making use of the condition (2.10)
and the covariant derivative (;), then the equation can
be reduced to

ka;w;V+AkrVFrmyu+Amrquruu - -1—5Mkm”.

a
LI
We can also have the following equation, which can be
driven from the Bianchi identity in PGT in exactly the
same way as above:

F'[kmuu;y +AkrVF1'rmyu +AmruF1kr;w — 0’

(2.12)
where FT¥miv i the dual of F¥™#  namely
Ftkmyv — %kaapeaﬁ;w — lemrsersnpbnpbpu

2
with the Levi-Civita symbol e¥™7P (0123 = 1),

2.5 Abelian solutions

We already know[8] that above equations (2.11)
and (2.12) can be written in the complex Einstein-
Yang-Mills form

Fov, i, x F = 4%15;;4, @.13)

j-”riw;u —id, x Ftw = o, 2.19)
if we define
- )
(-A/.t)a = Aan + EfabcAbcl.n
- )

(T;w)a = FOa;w + Efachbc;w)

o )
(SMy)a = SMOa;l + ‘2‘fachMbcy.

And also the field strength for the complex Lorentz
gauge field A, can be written as
Fuv=Appy— A, —id, x A,. (2.15)

Let us now consider so-called Abelian solutions whose
existence is well-known in the ordinary Yang-Mills

LFor simplicity we name the relativistic covariant derivatives with Christoffe! connections Einstein’s covariant derivatives.
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theory. There the Yang-Mills equations can be reduced
to the Maxwell equations. Here we get, however, the
complex Maxwell equations. In fact, if we put

./i‘,‘ = ﬂ-:Aua

then we get at once from the equations (2.13) and
2.14)

(2.16)

1
o
v 4aq
Ftuv W 0,

a8k 2.17)

(2.18)

where ,5 is assumed to be some constant complex vec-
tor field and & is its inverse, i.e., @ = £. And F** is
astrength of the complex Maxwell field A,,:

Fuv = Avm - A#.v-

Additionally, we note also that the field equation (2.17)
can be written as

1 -
luv — QK \*
Fy = g (@8h + (a-Shp) ), @19
1 -
2pv u =~ CB\x
P2, S (@84 - @ Sh)) 220)

where the real fields A, and B, are defined by A, =
A, +1iB,, and F,, and F?,, are the corresponding real
field strengths, respectively.

On the other hand, the energy-momentum tensor
(2.7) for the Lorentz gauge field is then given by

g
Tow = Safy {FLF - 2R PP — FL PP
+ 282 FL PP} — 8012 { Flu P2

+FL R - )

where we put 5 ,[7 = 3,+15,. We shall see later that 5,
and 3, are invariant under any Poincaré gauge transfor-
mations.

2.6 Gauge transformations

In this subsection we consider the transformation
properties of the constant fields G and the complex
Maxwell field .A# under the Poincar’e gauge transfor-
mations (2.1).

We can easily see from the transformation property
of Fimy, that the complex field strength FH¥ trans-
forms as

SFW = i x T 4 gh PV 4 g (T,

where we put (W), = woq + £€apcwse, Which is just
a rotation vector in a complex 3-dimensional space.

(2.21)

Then if we assume F,,, to be a world tensor just like
the ordinary electromagnetic field tensor, then from the
definition (2.16) and above relaEion we can get at once
the transformation property of 3

66 = —iW x 4. (2:22)
On the other hand, from the transformation property of
the Lorentz gauge field A, , we find

5A, = =W x A, — € - W,
and therefore, because of (2.22),

JA” = —&V'#Ay + X,#, (2.23)

where we put y = —a - W.

Here it should be remarked that the local Lorentz
transformations (dz¥ = ¢ = 0, dbp* =
—w™(z)by*) are now reduced to the complex phase
transformations for the complex Maxwell field A,,.
Accordingly, this fact leads us such an expectation
that we may be able to construct the theory for the
Lorentz gauge field being now identified with an com-
plex Maxwell field in terms of a gauge theory based on
an extended phase transformation. This problem will
be discussed in the next section. Additionally, it should
be noted that any local Lorentz transformations can be
composed of the following two parts:

1) the rotatnon about a parallel axis to ﬁ in this case
W x B =0,so0that §3 = OandéA, = x .

(2) the rotation about an ; axis perpendlcular to ﬂ in
this case y = —a- W = 0, andJﬂ_ —iWxf
anddA, = 0.

Finally, we note that because of the transformation
property(2.22) of ﬁ, the quantity ﬁ . ﬁ (and therefore
its real part 8, and imaginary part §, too) is invariant
under any Poincaré gauge transformations.

3 Gauge theory based on extended phase transfor-
mations

3.1 Extended phase transformation

Let us consider a set of two fields ¥, and ¥,, each
(both) of which may be a Dirac or Majorana field or

others:
(%
o=(2).
And we assume that the free field action
Iy =/d4:c L(0n¥, 0,0, ¥ ¥)  (3.1)

is invariant under the following phase transformations:

U =", 3.2)
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Here v is a 2 x 2 hermitian matrix defined as
v =aFE +ibl,

where a and b are real parameters, and £ and I are
2 x 2 unit matrix (will be omitted hereafter) and the
2 x 2 representation of imaginary unit ¢, respectively.
Mathmatically speaking, those transformations belong
to an Abelian subgroup of U(2).

Incidentally, any quantities like ¥T¥ and
U9, ¥, - are clearly invariant under above trans-
formations, since the generators £ and I commute.

3.2 The gauge theory

We consider here the gauged infinitesimal transfor-
mations

U = —iy V¥, Ut = 4wty

where
¥ =7(z) = a=a(z), b=b(z).

The action (3.1) is no longer invariant under these
transformations. However, we can get the invariant
action by means of the replacement of the ordinary
derivative 0,,, ¥ in the original action by the covariant
one V,,, V. Here the covariant derivative V,,, ¥ is given
by

V¥ =0,V +id, ¥
with

Am = AL +iA% 1,

where A}, and A2, are two real gauge vector fields. In
order to keep the action invariance under the gauged
transformations the gauge field .4,,must have the
transformation property

dAm = Omy.

3.3 Invariant action

The field strength F,,,, for the gauge field A,, can
be gotten by calculating the commutator

Vi, Viul¥ = i Fpp, 0.
Then F,,,, can be written as

Fim = Fopy +iF2, 1
with

Fl =0, Al — Om A
F2 = 0kAL — 0, A2

From this field strength F,, and its complex conju-
gate ¥ we can make the following invariants:

FrmFE", FemFE™, FinFrEm.

And using these invariants we construct the invariant
action [ 4 for the field A,. Taking the reality of the
action into account we have

Iq= /d4x\/—g£A (3.3)
where?
K. K
LA = (_él}-km]:np + Z}-kmfnp
K:*

+ T?me;p)gk"gmp.

K, is areal constant and K = K, +iK3I forreals Ko

Next, using the action (3.3) we are going to cal-
culate the energy-momentum tensor for the field Aj.
Accoding to the ordinary procedure[9] we can get eas-
ily the result

Ta = 2K\(Fp, Fe™ + FepnFi™)
+ ’C(}-imfkm +}-km-7:im)
+ KNF T + FinFI™) — 20 La,
or
T — - 1 plm l ol 1mn
= A HER) (P Fe™ = 29k Fnn FI7T)

1
- 4Ky - Kq)(F2,FP™ — ZgikFianm")
+ 4Ks(Fi F{™ + Fip FP™
1
- §g,'kF,}m F2mny (3.4)
This expression should be compared with the energy-

momentum tensor for the Lorentz gauge field (2.21),

then we find that both energy-momentum tensors coin-
cide if

Ky =248, K3=0, K3 =—2a,6,. (3.5)

2Here we are treating the field in a flat spacetime background. But we use formally the metric gj,,, g¥™to get a symmetric energy-

momentum tensor,
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3.4 Dirac field as a source

We here assume that the field ¥ is a set of two
Dirac fields ! and 2. Then we have the following
invariant action for the total system:

Ir = /d‘*z(%ﬁy"vkw - %vk%kw — m¥¥)

+/d4:c(£fl—1f;:m}""” + l:-}“km}'k’" +c.c)
3.6)

where ¥ and v* are given in terms of two 4-component
Dirac fields ¢! and 12 and Dirac’s gamma matrices yp

by
_( ¥ k_(7 0
‘I’_(W md =00 )
respectively.

By the variational principle we can derive the fol-
lowing equations:

(iv* Vi —m) ¥ =0,

or, in terms of each field 1, 2
i* (O + ALY — myt =

i (O + iA})Y? — my? =

and also for the component fields of complex Maxwell
field

Flkm -1 Jlk
( Fokm’ ) =3k ( g2 ) 39

where K is a 2 x 2 matrix

k[ K- K Ks
= Ks —(Ki+Ky) )’

3.7
(3.8)

27k¢2
—iA 7k¢1

and the currents J*and J2* are put as

PEo= L@ T, G10)

U VA Y B AT

In particular, if we adopt the values (3.5) for K'’s and
put
1 - = . o
J1”=§(ﬂR-SMR"—ﬂI-SMI“)
1 - = -
JH = —'2'(,312 -Smr" + Br - Smr"),
then both equations (2.19,2.20) and (3.9) coin-
cide in flat space-! -time (bx* = Ok#), where

ﬂR, ﬁ, andSMR" S are the real and i imaginary
parts of ﬁ and Sy, respectively.

This coincidence, together with the coincidence
of the energy-momentum tensor, appears to imply an
equivalency of the complex Maxwell theory reduced
from PGT and one derived from the gauge theory
based on extended phase transformations. If so, we
can conclude that the Lorentz gauge field must be gen-
erated by a pair of at least two Dirac fields. Here the
term “at least” means the fact that since the complex
Maxwell field A, isa spemal one of the Lorentz gauge
field: Axmy S .A = ,B.A”, we may need generally
more than two Dlrac fields.

4 Summary and conclusion

In this paper we treate with a model of Poincaré
gauge theory which is reducible to a complex Einstein-
Maxwell theory. On the other hand, we propose a
gauge theory based on an extended phase transforma-
tion. And we have shown that both theories can coin-
cide at least formally. Accoding to this coincidence,
we infer that the Lorentz gauge field should be created
by a pair of at least two Dirac fields. However, we
do not know at this stage how many Dirac fields are
needed. This problem may be solved by researching a
gauge theory equivalent to a complex Yang-Mills the-
ory. Anyway, it seems to be interesting to discuss about
a black hole of such sources as being able to create the
Lorentz gauge field.
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