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Abstract Equivalence of a linear system of n differential equations x = Ax with a non-singular matrix A, to a one-variable
homogeneous ordinary linear differential equation of rank =, is discussed by means of the companion matrix of the
Frobenius form. A Krylov sequence of vectors is involved in the construction of a matrix to transform the system of
differential equations to a one-variable differential equation. The discussion is based on the linear and combinatorial
algebra. Solution of the homogeneous linear ordinary differential equation is derived through the companion matrix.
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1. Introduction

The Newton equation of motion gives Hamilton equations. The Hamilton equations are equivalently represented as
Lagrange equations which yield an Euler-Lagrange equation [1]. In this statement, it is worthwhile to note that there exists a
certain equivalence between the homogeneous linear differential equation of a variable of rank n and a linear system of n
differential equations x = Ax with a coefficient matrix A of rank n. Another example of this kind is found in the theory of
relaxation as the relation of differential general linear equation of a pair of macroscopic conjugate variables to the linear
system of differential equations on n pairs of microscopic conjugate variables [4]. The macroscopic variables are usually
observable physical quantities, while the microscopic variables difficult to observe, consist of n pairs of conjugate variables
corresponding to n different relaxation times. Conjugate variables are, for instance, strain vs. stress, temperature vs. entropy,

electric displacement vs. electric field, magnetic flux density vs. magnetic field, chemical potential vs. concentration and so
on.

The above relation is summarized to an equivalent relation between a one-variable linear differential equation of rank n
and a system x =Ax with A€ GL(n;K) (K : Field), where GL(n;K) is the group of all general linear transformations of
n-dimensional vector space over K or all non-singular matrices of order n with K components. Let f(z) be a polynomial of

i/

def
degree n and d, =%. For a given f(d, )x =0, a companion matrix of f gives a linear system x=Ax with x = (x )

x,=x and x, =X, (i=2,3,---,n). The converse does not always hold. For instance, a symmetric matrix with a 2-folded

eigenvalue is not similar to any companion matrix. This paper deals with such converse problem and discussion leads to
solution of the homogeneous linear ordinary equation through the companion matrix.

2. Companion Matrix
Let f(z) be a monic polynomial ina K coefficient polynomial ring K[z] with a field K :

(D f@)=Yaz" (a,€K,a,=1).
i=0
In practice, X is the real or complex number field. The companion matrix of f is defined as a square matrix A of order n

def,
whose characteristic polynomial is f; that is, @, (z) =|zE - A| = f(z), where @, (z) is the characteristic polynomial of A, and
E the unit matrix. Matrices
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0 1 0 0 -a, -a, a,, -a,
0 0 1 0 1 0 0 0
A= : P, A= 0 1 0 0
0 0 0 1
-a, —a,, —a,, ‘- —a 0 o - 1 0

are often cited as companion matrices of the Frobenius form [2, 3]. Hereafter, A, is denoted by A,. Let P be a

non-singular matrix, i.e.,, PeGL(nK) . Since @, (z)=®,(z), P"'AP with a companion matrix A of f is also a

AP

10 11
companion matrix of £ The converse does not hold; in fact, for A =( 0 1) and B=( 0 1), A and B are companion

matrices of (z—1)°, although A is not similar to B. By Hamilton-Cayley's theorem, @,(A)=0. Then,
Proposition 1. 3PeGL(n: K); P'AP=A, = f(A)=0.

Let N={1,2,---,n} and 2c N with |2|=i where || stands for the order of |£2|. A submatrix of A associated with £2

def
, denoted by A,, is defined as a matrix whose jth rows and columns are deleted from A for all j € 2; A, =(1).

Theorem 2. If A is a companion matrix of f, then a, =(—1)i 2|A0|, where the summation ranges over all £ with
|Ql=n-i

|2|=n—i and |A,| exhibits the determinant of A,.

Proof. Since A is a companion matrix of f,

@  |E-Al=Faz (a=1).
i=0

By definition of the determinant, |zE —A|= Z sgnO‘H(6 ()2~ @ MJ.)) . Hered,; is Kronecker's delta and sgno the
0eQf, j=1
signature of a permutation o in the symmetric group Q%, of order n. By comparing the coefficients of degree n—i in (2),
a= ¥ sgo]] (_aja([)) .
|Q]=n-i oeQf(N-Q) jeN-Q
Here, Q8 (N — ) is the set of all bijective transformations of N —£2, and the first summation is carried out over all subsets

of Nof order n—i. Then, a,=(-1) Y |Ag] . [ |

|Q}=n—i
Especially for i=1 and n, it follows directly from Tr(P™'AP)="TrA and |P"AP| =|A| that @, =-TrA and a, =(-1)"|A|.
The following is readily deduced from Theorem 2.

Corollary 3. 3P e GL(n;K); P"'AP=A4, = a,=(-1) Y|4,|.

|Q|=n-i

3. Homogeneous Linear Ordinary Differential Equation (HLODE)

Let K be a topological field, C*(K) the set of all infinitely differentiable functions. Substitution of d, for z in (1)
yields a differential operator f(d,) of C”(K) to C*(K). Let x be a function of r (€ K) and consider the homogeneous
linear ordinary differential equation:

@  fd)x=0.
Here, d,° 21 with the identity operator /. Equation (3) is written in the form of x = A x with x=(x,), x, =x, x, =%, -+,

x, =x"" =d,™x as mensioned in Introduction.

Now, consider the converse problem to find a representation of (3) equivalent to a given system of linear differential
equations x = Ax (A € GL(n;K)).

Let P=(pl p2~~-p,,) with column vectors p,. AP=PA, gives Ap,=-q,p, , Ap,=p,—a, P, » "
Ap,=p,.—ap, . Then, p,=(A""+a, A" +..+a .E)p, . Thus, the following proposition holds.

n-i

Proposition 4. AP=PA, = P=(p,), p, =(A"'i+alA""" 4ot .E)p,l .

n—i
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The converse of Prop. 4 holds for P e GL(n;K).

Proposition 5. Let Pe GL(n;K).
P=(p,), p,=(A""+a,A"" +--+a,_E)p, = AP=PA,

Proof. It suffices to show Ap, =—a,p, . By Prop. 1, A" +a, A" +---+a,_A=-aE .
Sincep, =(A"" +4,A"? +-~+a,,_,E)p,l , Ap,=-a,p, . |

Let x, be a given vector and x=Ax with x(0)=x,. Then, x=(exp?A)x, is the unique solution of the initial value
problem of x = Ax with x(0)=x,. Inthe case of AP=PA, with PeGL(n;K) and by setting x=Py, y= (exp A ,)P"xo
is the solution of y=A,y, y(0)=P'x,.

4. Jordan Canonical Form
Let J be a matrix of the Jordan canonical form similar to A, i.e.,3Ue€GL(n,K); J=U"AU. Suppose
3VeGL(nK); JV=VA,. Then, A(UV)=(UV)A,. Now, let P=(p,p,--p,) with p,#0 (j=12,-n) and

p j='( P1jPaj Py j) satisfying A P = PJ. Two cases are considered according to diagonal and nondiagonal J.

Case 1. J: Diagonal. Let A, (i=1,2,--,n) be eigenvalues A,. By the assumption of A€ GL(n;K) or A, € GL(n,K), all
A;'s are nonzero. P is assumed to be a matrix related to A, as
/11 R (o}
AP=P 2

o An
. i . 4 n—-
Hence, A;p,=4,p,(j=12,++n). Thus, p,;=4p,;=4/p; (i=12,-,n-1). Then, p,=p, (llju-}t’ ')=0 .
Therefore,

2 2 e 2 "
|Pl=pupi+Pia 51 2 n =E1’1J'H(’1i'li)‘

i>j
lln—l ;LG—l /’Ln"_l
Hence, it follows that

Proposition 6. (1) A, #4, (i#/)= |[P|20.  (2) 3i,j(i#));A4 =4, = |P|=0.
Corollary 7. 3P e GL(n;K); AP = PA, & A, ¢/1] (i¢j) .

Corollary 7 implies that all eigenvalues of a matrix similar to a non-singular A , are different one another, in case the Jordan
canonical form of A, is diagonal.

Case 2. J: Nondiagonal, i.e., there exists a Jordan block of J of order larger than 1.
Jl (6] li ; . (0]
J= 2 , J;: n, Jordan block such that i .

o Jy 0 A

J is denoted by é]i or J,®J,®---@J,. The characteristic polynomial of J is f(z)= lL[(z—/'L,.)"’ s with 4,24, (i # j),
i= i=1
2m=n. Let A{ denote the companion matrix of (z—4,)". P such that AYP =PJ, (i=1,2,-,r) results in

A1 o
('{Bl A}")(é ,.) = (; E)(é Ji). Then, it suffices to discuss the case of r=1; that is, J = A
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5. Krylov Sequence of Vectors
Since A € GL(n,K) is assumed, A #0. With A, G:A, —-AE, A P=PJ yields

01 (¢}
A ~ s 0 ‘.
Ap,=0, Ap,=p, (i=12,,n-1),0r AP=PE, E = .1

o} 0

Such a sequence of vectors as {p,.} defined by p, = A /Piy With p, # 0 is called the Krylov sequence associated with A "
[3]. By setting p, =p,

pP= (P|P2 ’ "pn) = (Ajpz Appy A, pn) = (Afn_lp A/n_zp = Ap P) .
Now, consider the determinant of P. Since p; = A,"“p = (A, - AE)Hp , P, is a linear combination of A,"'ip, A/"'i"p,---,p

. Hence, lPl=|Af""p A p--Ap p| )

6. Construction of Non-singular Matrix P for Nondiagonal J
The problem to solve is to show the existence of P& GL(n;K); A,P=PJ and construct such P. Let A; and E, be

defined as

nv

dety s |—a p=n-i) i ; 1 (V—/.t=i)
A = (ij) , (i) — n—(v-j)+1 ( JE = (i) , @) — ,
Y (a“" ) v 0 (otherwise) ~ (e“') K 0 (otherwise)

which are further explicitly represented as

0 0 (0] 0 - 0 1 (o)
A= 0 - 0 -a, - —aj+1 E= 0O -0 O 1
il e 0 e e 0 ’ =0 . Q0 - e 0
i{ : : : i{ : : :
0 «« 0 v - 0 0 «+ Q0 - - 0

Then, A, =Ay, +E, .

Proposition 8. (1) A A, =~a,, A, @) EA,=A.. . AE=A,.,, 3 EE=E,, E"=E,.

Proof. (1)
j n-k !
(o] o
AjA,=|0 - 0 -a, -a,, - —au, v =@, |0 - 0 -a, - -a,|(n-k
i (¢] o
’__L
o .- 0 O
==Cjn 0 0 -a, - -ay (n—i =a;,.4
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k k i=j-1
Pl‘OpOSIthl’l 15 (1) q(k) - Z(IJ(_A')I pn+i-l-l (k <is n, 1< J s n) (2)For i> ] 4 ' = Zakpnw-j—k zakp:ni—]—k - a:—j-lp ’
1=0 -
1 (m=1)
. . (I) = .
(3)For i>], MZJ,.C a, {0 (1<m<i))
k20,021
Proof. (1)For k=1and i>1, qs) =4;j _Mi—lj =qija —)“qi-]l = Pusi-j _Apm-i-j—l .
For i>k,
k-1 . k-1 !
at=aiy? a5 = 3T ) DA P

=,,M,A_,+g{[";1){’;:1‘)}(-1)'%-,-,+(—A)‘ ) o ST
R s

n—j ] "
0 k+l=m ( k ](l] (_A’) Phsicjom *

0sksn-j,0sISj
Here, the factor in the parentheses satisfies the following lemma.

Lemmal6s. 3 (" ;J)U) = (;) (0<j<n).

0sksn-j,0<Isj

Proof.  The right is the number of m-element subsets X of N={1,2,--,n}. Let N, and N, be N=N,UN, with

I
M=

3
[

n—
N, AN, =@, [N||=n-j,|N,|=. ( k]) and (J are the numbers of k-element subsets X, of N, and the number of [

-element subsets X, of N,, respectively. Any combination of X, and X, gives an X . Conversely, let k, [ be k =|X anl
l =|X mNzl. Then, k+I1=m. Thus, all the m -element subsets X are counted in the left. |

Z i n n m

Since f(z)=Y a2 =(z=A)", a, = (m)(—,l) . By Lemma 16, the first equality of Prop. 15 (2) is shown. The proof of
i=0

the rest is obvious from the definition of a; .

m-1
(3) Since ca, =1, the proposition holds for m=1. For m>1, ¥ c"a, = Zc‘”‘ Ya, =Y c"Na, +cMa,

k+l=m k=1
k20,121

By Prop. 10 (2), the right is equal to 0. ]
Proposition 17. 1, =0 (i>}).

Proof. Fori>j, r, = 2akpm_j_k —a,f_j_lp . Since p,,._; =, =z<‘c("a,f_j_,p (by Prop. 11),
1=1

EOE EE )
2 2 a; —;—k—lp a:-}-lp (t ca,a;] ijmk-1 a.-j-x)l) .

k=0 =1 k=0 I=1

’

The first term in the parentheses is written as 2 Zc(')a,‘ a,. ;. . Combined with Prop. 15 (3), the proposition is proved.

m=1| k+l=m
k20,121
[ ]
Toeon qul. q.‘i’
iti s C » " ;
Definition 18. R/ = O r” ql}*" ee ql" (J= 1’2,...,'1).
o qﬁ’,l. qf.’..’

By Prop's. 14 and 17, denote
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LTRY! Na
R=|
h2
O LA
. o (n=j . n—j n-j
SIS ¥ el CORPES (il SRS o ol SO Rt
k=j J k=j J k=j

Since |P|=|R| (i=1,2,-+,n), the following theorem is obtained.

Theorem 19, |P|= {Z.( ) }

Proof.
a1 B0y " n-1 e B ENCE P ”.
LR b ) SYM ) () ST IR STP B 3 ey S
Corollary 20. (1) p=(1(1+2)--(1+4)") = |Pl=1. @) p='(12--2"") = |P|=0.
Proof. By Theorem 19,

|P|= {Z(k J( —2)"ED (4 ) } [{1+A ]

k=1
Similarly, (2) is shown. ]
To construct a non-singular P satisfying A,P=PJ or A P = PE,, it suffices to say A,"p =0. Let

p =‘(l (1 +l)---(l+/1)""), and q,=' (" ¢+-q) (i=1,2,--n) be defined as

0 (jsn-i)
(‘)del‘
q; = i+(j=1)-n( 7 1 .
S uen-
k=0

Then, q,.='(0~-0qf,"_’,,,I “’) especially, q,='(0---01) and q, =p.
Proposition 21.
1) 3,p=p—q. ,
?2) ,a,qi =q,,-9q, (iSn-1); especially for i=n-1, fi,q,‘_l =p-gq,,
3) A,‘p=p—q,. (i<n); especially for i=n, A,"p=0.
Proof. (3) follows from (1), (2). In fact,
Ap=A,p-q,)=Ap-Aq =(p-q,)-(0,-a,)=P-4q, -

~

Recursive operation of fi, on p gives A, p=p-q;. For i=n, A"p=p-q,=0.

(1 f(z)=(z—/'l)"=2":a,z"’i , a,:(?)(—/l)i and
i=0
A1 )
-2 1
A=A, -AE=
) -4 1
—ap —a, ; - -a, —al—/'L
For j<n-1, (4, ) _—A.(1+A)j"+(1+/1)’ (1+2)™".
. 3 n R ] 1 -1
For j=n, (Ap ',2 5,/1)1 “(n G- 1)J( AU (142 - A1+ 2)
{1+1 AV +(1+2) = A1+ 2)" =(1+4)" -

Thus, A,p=p-—q, .
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n ) . 0 (j€n-i-1
(2) For j<n-i, (A’qi)j=_M1')+q(') ={ (J ) )

Mt (j=n-i)
For n-i<j<n-1,

a5 (L S-S £ - £ 0G0

i+j-nfj—1 (i+1+(j-1)-n( j 1 .
=1+ ﬁ (1 ]A’L = Z (J )}'k =q§:+]).
k=1 k k

k=0
The following lemma is shown before completing the proof for j=n

o S0, r S0 o 0

k=0

Proof. Replacing p—kby kyields the first equality.

(ZZZ]U:}(,,_(Z)I(',?’_,,)yk!(,,"ik)f - ‘(p)()

k(p-k) pl(n-p) \kAp

-G G

whence

Return to the proof of the proposition.
For j=n,
(AJQ.')" = Z,( —I+|)ql M(l) ’
n n (i)-n (] —1 i1fn-1
- -1 n-l A'n-hl 2,
1=§5+|{( ) (”‘“‘1) kz-t; ( ) } hzf')( )
n  i+(l-1)-n n i-1fp—1
— -1 n-l n—l+k+l Ak*l
2 el
i +k 1
Z{ 1)”“5 (-1) ( )(" P ) " }/v
k=0 p-1
i i1 o n Yn- p+k) ( ) 1]
+
Z{ ) g ) (p-kJ[ p-1
From [ ™| ="' |+(" ") and Lemma 22, fol S e =g 1 . Thus, 4 |
m = = —_
T » » p-1 and Lemma ollows ( ,q,) =| . Thus, A,q,=q,,,—q
It is, accordingly, verified that
Theorem 23.
(1)  VJ: Nondiagonal Jordan block with an eigenvalue A, IPeGL(n;K ) AP=PJ.
P is expressed as P=(Af""p A,"‘zpmA,p p) with p= (1 (1+4)--(1+2)" )
@  VI=@J, (i=12r);
i)\ & T x Noks 232 NG
(60 ar)-(an)&0). A=(irn - nn)
with pi='(1(1+,1,.)...(1+/‘L,.)""1).
7. Solution of HLODE through Companion Matrix
Let f(z) be a polynomial of (1) and f(z)=[](z-4)" . A #A,(i#j), Y. =n . The general solution of
i=1 i=1
£(d,)x=0 is given by
! 1 (Y7 1
(4) = 1, i e K ? i = 5 r ’
x E’/-Zoc j€a..i (C.J ) Cij (ni—j)![all,.) k—lk)n

i
k=1k=i
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You . . . - .
where e, ;= —_'e"‘ (j20) [7]. For a non-singular matrix A similar to a nondiagonal Jordan canonical form, the general
=

. . ! . n- . . .
solution of x = Ax is expressedas x= Py, y= (x %o xl ')), where Pis a non-singular matrix such that AP= PA,. Here,

x requires calculation of d,"eM . The following lemma is readily proved.

Ae (j=0)

Lemma 24. d,eu={e‘ e, (i>1)
2,j-1 i U2

i m
Proposition 25. de, , = (ﬁ }(m i+ k)/l'""*kelik .
k=max{j-m,0 -

Proof. Since d,"e," ; =€, the proposition holds for m=0. Inthe caseof 0<m<j,

~ m-1)_, atfm—1) .
d,"'eM =d,(d,"' lea,,/) 2( )'1‘1 € js(mayi = ;( i J’l (ell.j—m+i +Ael.,j-(m-l)+i)

i=0

m=1 m-1 i m i
=€ jem +Zl(( ) (z D’veu i TAE = Z( ) Crjomei = 2 (m—j+i]2'm-j“e’"i .
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Similarly to this case, the mathematical induction on mis adapted to m > j.

d'e,;=d, (d:m_lez.j) = (m’i 1_1 jjlm_jez.o + g( " 1- J’V‘_I_M (e“_, +Ae l.i)
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m-—1 m-1 j m-1 m-1
= + lm-} + lm—l-}+i ) A'm )
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( )A'm-/ei.o +§[m 1 j +l)2'm_l-j“.e1_,'_1 +Ame1.j
m-j m-/+: m = m-j+i
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By Theorem 23 (2), it is, therefore, sufficient only to apply the above general solution (4) to the case of f(z)= (z -A )"’ s
in order to solve the homogeneous linear ordinary differential equation.

8. Engineering Application

The automobile car-body requires cold-rolled sheet of low carbon steel with high strength as well as press formability
and non-ageing. In the process of production of such steel sheet, the continuous annealing line has been employed since
1970s. On rapid cooling, interstitial atoms of carbon and nitrogen contained in the steel in the order of 10 wt ppm remain in
solid solution. These atoms can diffuse to dislocations to relax internal stress even at room temperature, and they deteriorate
press formability. The internal friction measurement which is non-destructive and the most precise analysis of each
interstitial has played an important role to control the content of interstitials in solid solution. A species of interstitial yields
a Snoek peak of internal friction due to stress-induced ordering of interstitial atoms [5]. The Snoek peak is an anelastic
relaxation peak of the Debye type. The mechanical behaviour of the interstitials under an applied stress is characteristic of
the standard linear solid [6]. Each standard linear solid corresponding to a species of interstitials is represented by an
ordinary differential equation of stress and strain. There exist differential equations for each species of interstitials. The
behaviour of solid, here steel sheet, is a resultant synthesis of all interstitials in solid solution. The present mathematical
consideration links single relaxations to a multiple relaxation to understand mechanical property of the low carbon steel
sheet. Furthermore, decomposition of the multiple relaxation into its constituent single relaxations is theoretically asserted.
The conjugate variables of the strain and stress are pointed out as the introduction.
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